Displaying similar documents to “On σ-porous and Φ-angle-small sets in metric spaces”

On α(·)-monotone multifunctions and differentiability of γ-paraconvex functions

S. Rolewicz (1999)

Studia Mathematica

Similarity:

Let (X,d) be a metric space. Let Φ be a family of real-valued functions defined on X. Sufficient conditions are given for an α(·)-monotone multifunction Γ : X 2 Φ to be single-valued and continuous on a weakly angle-small set. As an application it is shown that a γ-paraconvex function defined on an open convex subset of a Banach space having separable dual is Fréchet differentiable on a residual set.

Optimal solutions of multivariate coupling problems

Ludger Rüschendorf (1995)

Applicationes Mathematicae

Similarity:

Some necessary and some sufficient conditions are established for the explicit construction and characterization of optimal solutions of multivariate transportation (coupling) problems. The proofs are based on ideas from duality theory and nonconvex optimization theory. Applications are given to multivariate optimal coupling problems w.r.t. minimal l p -type metrics, where fairly explicit and complete characterizations of optimal transportation plans (couplings) are obtained. The results...

A Cantor set in the plane that is not σ-monotone

Aleš Nekvinda, Ondřej Zindulka (2011)

Fundamenta Mathematicae

Similarity:

A metric space (X,d) is monotone if there is a linear order < on X and a constant c such that d(x,y) ≤ cd(x,z) for all x < y < z in X, and σ-monotone if it is a countable union of monotone subspaces. A planar set homeomorphic to the Cantor set that is not σ-monotone is constructed and investigated. It follows that there is a metric on a Cantor set that is not σ-monotone. This answers a question raised by the second author.

Decreasing (G) spaces

Ian Stares (1998)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We consider the class of decreasing (G) spaces introduced by Collins and Roscoe and address the question as to whether it coincides with the class of decreasing (A) spaces. We provide a partial solution to this problem (the answer is yes for homogeneous spaces). We also express decreasing (G) as a monotone normality type condition and explore the preservation of decreasing (G) type properties under closed maps. The corresponding results for decreasing (A) spaces are unknown. ...