Analytical View of Sir Isaac Newton's Principia
Henry Brougham, Edward John Routh
Similarity:
Henry Brougham, Edward John Routh
Similarity:
Laureano F. Escudero (1983)
Qüestiió
Similarity:
Jeff Kuo-Jung Wu, Hsui-Li Lei, Sung-Te Jung, Peter Chu (2008)
The Yugoslav Journal of Operations Research
Similarity:
Ioannis K. Argyros (2005)
Applicationes Mathematicae
Similarity:
The Newton-Kantorovich approach and the majorant principle are used to provide new local and semilocal convergence results for Newton-like methods using outer or generalized inverses in a Banach space setting. Using the same conditions as before, we provide more precise information on the location of the solution and on the error bounds on the distances involved. Moreover since our Newton-Kantorovich-type hypothesis is weaker than before, we can cover cases where the original Newton-Kantorovich...
Foltyn, Ladislav, Vlach, Oldřich
Similarity:
To solve the contact problems by using a semismooth Newton method, we shall linearize stiffness and mass matrices as well as contact conditions. The latter are prescribed by means of mortar formulation. In this paper we describe implementation details.
Ioannis Argyros (1999)
Applicationes Mathematicae
Similarity:
A new Kantorovich-type convergence theorem for Newton's method is established for approximating a locally unique solution of an equation F(x)=0 defined on a Banach space. It is assumed that the operator F is twice Fréchet differentiable, and that F', F'' satisfy Lipschitz conditions. Our convergence condition differs from earlier ones and therefore it has theoretical and practical value.
José Antonio Ezquerro, Daniel González, Miguel Ángel Hernández (2013)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Similarity:
From Kantorovich’s theory we present a semilocal convergence result for Newton’s method which is based mainly on a modification of the condition required to the second derivative of the operator involved. In particular, instead of requiring that the second derivative is bounded, we demand that it is centered. As a consequence, we obtain a modification of the starting points for Newton’s method. We illustrate this study with applications to nonlinear integral equations of mixed Hammerstein...
J. Trojan (1980)
Applicationes Mathematicae
Similarity:
Fredi Tröltzsch, Stefan Volkwein (2010)
ESAIM: Control, Optimisation and Calculus of Variations
Similarity:
A Lagrange–Newton–SQP method is analyzed for the optimal control of the Burgers equation. Distributed controls are given, which are restricted by pointwise lower and upper bounds. The convergence of the method is proved in appropriate Banach spaces. This proof is based on a weak second-order sufficient optimality condition and the theory of Newton methods for generalized equations in Banach spaces. For the numerical realization a primal-dual active set strategy is applied. Numerical...
José Antonio Ezquerro, Daniel González, Miguel Ángel Hernández (2012)
ESAIM: Mathematical Modelling and Numerical Analysis
Similarity:
From Kantorovich’s theory we present a semilocal convergence result for Newton’s method which is based mainly on a modification of the condition required to the second derivative of the operator involved. In particular, instead of requiring that the second derivative is bounded, we demand that it is centered. As a consequence, we obtain a modification of the starting points for Newton’s method. We illustrate this study with applications to ...