# The SQP method for control constrained optimal control of the Burgers equation

Fredi Tröltzsch; Stefan Volkwein

ESAIM: Control, Optimisation and Calculus of Variations (2010)

- Volume: 6, page 649-674
- ISSN: 1292-8119

## Access Full Article

top## Abstract

top## How to cite

topTröltzsch, Fredi, and Volkwein, Stefan. "The SQP method for control constrained optimal control of the Burgers equation." ESAIM: Control, Optimisation and Calculus of Variations 6 (2010): 649-674. <http://eudml.org/doc/197340>.

@article{Tröltzsch2010,

abstract = {
A Lagrange–Newton–SQP method is analyzed for the optimal control of the
Burgers equation. Distributed controls are given, which are restricted by
pointwise lower and upper bounds. The convergence of the method is proved in
appropriate Banach spaces. This proof is based on a weak second-order
sufficient optimality condition and the theory of Newton methods for
generalized equations in Banach spaces. For the numerical realization a
primal-dual active set strategy is applied. Numerical examples are included.
},

author = {Tröltzsch, Fredi, Volkwein, Stefan},

journal = {ESAIM: Control, Optimisation and Calculus of Variations},

keywords = {Burgers' equation; SQP
methods; generalized Newton's method; primal-dual methods; active set strategy.; Burgers equation; SQP methods; generalized Newton method; active set strategy; optimal control},

language = {eng},

month = {3},

pages = {649-674},

publisher = {EDP Sciences},

title = {The SQP method for control constrained optimal control of the Burgers equation},

url = {http://eudml.org/doc/197340},

volume = {6},

year = {2010},

}

TY - JOUR

AU - Tröltzsch, Fredi

AU - Volkwein, Stefan

TI - The SQP method for control constrained optimal control of the Burgers equation

JO - ESAIM: Control, Optimisation and Calculus of Variations

DA - 2010/3//

PB - EDP Sciences

VL - 6

SP - 649

EP - 674

AB -
A Lagrange–Newton–SQP method is analyzed for the optimal control of the
Burgers equation. Distributed controls are given, which are restricted by
pointwise lower and upper bounds. The convergence of the method is proved in
appropriate Banach spaces. This proof is based on a weak second-order
sufficient optimality condition and the theory of Newton methods for
generalized equations in Banach spaces. For the numerical realization a
primal-dual active set strategy is applied. Numerical examples are included.

LA - eng

KW - Burgers' equation; SQP
methods; generalized Newton's method; primal-dual methods; active set strategy.; Burgers equation; SQP methods; generalized Newton method; active set strategy; optimal control

UR - http://eudml.org/doc/197340

ER -

## References

top- R.A. Adams, Sobolev Spaces. Academic Press, New York (1975).
- W. Alt, The Lagrange-Newton method for infinite-dimensional optimization problems. Numer. Funct. Anal. Optim.11 (1990) 201-224.
- M. Bergounioux, K. Ito and K. Kunisch, Primal-dual strategy for constrained optimal control problems. SIAM J. Control Optim.35 (1997) 1524-1543.
- R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 5: Evolution Problems I. Springer-Verlag, Berlin (1992).
- A.L. Dontchev, Local analysis of a Newton-type method based on partial linearization, in Proc. of the AMS-SIAM Summer Seminar in Applied Mathematics on Mathematics and Numerical Analysis: Real Number Algorithms, edited by J. Renegar, M. Shub and S. Smale. AMS, Lectures in Appl. Math. 32 (1996) 295-306.
- A.L. Dontchev, W.W. Hager, A.B. Poore and B. Yang, Optimality, stability, and convergence in optimal control. Appl. Math. Optim.31 (1995) 297-326.
- H. Goldberg and F. Tröltzsch, On the Lagrange-Newton-SQP method for the optimal control of semilinear parabolic equations. Optim. Methods Softw.8 (1998) 225-247.
- M. Heinkenschloss and F. Tröltzsch, Analysis of the Lagrange-SQP-Newton Method for the Control of a Phase-Field Equation. Control Cybernet.28 (1999) 177-211.
- M. Hintermüller, A primal-dual active set algorithm for bilaterally control constrained optimal control problems. Spezialforschungsbereich F 003, Optimierung und Kontrolle, Projektbereich Optimierung und Kontrolle, Bericht No. 146 (submitted).
- M. Hinze and K. Kunisch, Second order methods for time-dependent fluid flow. Spezialforschungsbereich F 003, Optimierung und Kontrolle, Projektbereich Optimierung und Kontrolle, Bericht No. 165 (submitted).
- K. Ito and K. Kunisch, Augmented Lagrangian-SQP-Methods for nonlinear optimal control problems of tracking type. SIAM J. Control Optim.34 (1996) 874-891.
- K. Kunisch and A. Rösch, Primal-dual strategy for parabolic optimal control problems. Spezialforschungsbereich F 003, Optimierung und Kontrolle, Projektbereich Optimierung und Kontrolle, Bericht No. 154 (submitted).
- H.V. Ly, K.D. Mease and E.S. Titi, Some remarks on distributed and boundary control of the viscous Burgers equation. Numer. Funct. Anal. Optim.18 (1997) 143-188.
- S.M. Robinson, Strongly regular generalized equations. Math. Oper. Res.5 (1980) 43-62.
- R. Temam, Navier-Stokes Equations. North-Holland, Amsterdam, Stud. Math. Appl. (1979).
- R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer-Verlag, New York, Appl. Math. Sci. 68 (1988).
- F. Tröltzsch, Lipschitz stability of solutions to linear-quadratic parabolic control problems with respect to perturbations. Dynam. Contin. Discrete Impuls. Systems7 (2000) 289-306.
- F. Tröltzsch, On the Lagrange-Newton-SQP method for the optimal control of semilinear parabolic equations. SIAM J. Control Optim.38 (1999) 294-312.
- S. Volkwein, Mesh-Independence of an Augmented Lagrangian-SQP Method in Hilbert Spaces and Control Problems for the Burgers Equation, Ph.D. Thesis. Department of Mathematics, Technical University of Berlin (1997).
- S. Volkwein, Augmented Lagrangian-SQP techniques and optimal control problems for the stationary Burgers equation. Comput. Optim. Appl.16 (2000) 57-81.
- S. Volkwein, Distributed control problems for the Burgers equation. Comput. Optim. Appl.18 (2001) 133-158.
- S. Volkwein, Optimal control of a phase-field model using the proper orthogonal decomposition. Z. Angew. Math. Mech.81 (2001) 83-97.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.