Displaying similar documents to “On convergence of regularization methods for nonlinear parabolic optimal control problems with control and state constraints”

On regularization methods for the numerical solution of parabolic control problems with pointwise state constraints

Ira Neitzel, Fredi Tröltzsch (2009)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

In this paper we study Lavrentiev-type regularization concepts for linear-quadratic parabolic control problems with pointwise state constraints. In the first part, we apply classical Lavrentiev regularization to a problem with distributed control, whereas in the second part, a Lavrentiev-type regularization method based on the adjoint operator is applied to boundary control problems with state constraints in the whole domain. The analysis for both classes of control problems is investigated...

Optimal control of linear bottleneck problems

M. Bergounioux, F. Troeltzsch (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

The regularity of Lagrange multipliers for state-constrained optimal control problems belongs to the basic questions of control theory. Here, we investigate bottleneck problems arising from optimal control problems for PDEs with certain mixed control-state inequality constraints. We show how to obtain Lagrange multipliers in L spaces for linear problems and give an application to linear parabolic optimal control problems.

On an optimal control problem for a quasilinear parabolic equation

S. Farag, M. Farag (2000)

Applicationes Mathematicae

Similarity:

An optimal control problem governed by a quasilinear parabolic equation with additional constraints is investigated. The optimal control problem is converted to an optimization problem which is solved using a penalty function technique. The existence and uniqueness theorems are investigated. The derivation of formulae for the gradient of the modified function is explainedby solving the adjoint problem.

Optimality and sensitivity for semilinear bang-bang type optimal control problems

Ursula Felgenhauer (2004)

International Journal of Applied Mathematics and Computer Science

Similarity:

In optimal control problems with quadratic terminal cost functionals and systems dynamics linear with respect to control, the solution often has a bang-bang character. Our aim is to investigate structural solution stability when the problem data are subject to perturbations. Throughout the paper, we assume that the problem has a (possibly local) optimum such that the control is piecewise constant and almost everywhere takes extremal values. The points of discontinuity are the switching...

Unmaximized inclusion necessary conditions for nonconvex constrained optimal control problems

Maria do Rosário de Pinho, Maria Margarida Ferreira, Fernando Fontes (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

Necessary conditions of optimality in the form of Unmaximized Inclusions (UI) are derived for optimal control problems with state constraints. The conditions presented here generalize earlier optimality conditions to problems that may be nonconvex. The derivation of UI-type conditions in the absence of the convexity assumption is of particular importance when deriving necessary conditions for constrained problems. We illustrate this feature by establishing, as an application, optimality...