The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the approximate solutions of functional equations in L p spaces”

Differentiable solutions for a class of functional equations

V. Murugan, P. V. Subrahmanyam (2007)

Annales Polonici Mathematici

Similarity:

We give a set of sufficient conditions for the existence of differentiable solutions for a functional equation involving a series of iterates, using a method different from that of Baker and Zhang [Ann. Polon. Math. 73 (2000)].

On a linear functional equation with a mean-type mapping having no fixed points

Katarzyna Sajbura (2005)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

Our aim is to study continuous solutions φ of the classical linear iterative equation φ(f(x,y)) = g(x,y)φ(x,y) + h(x,y), where the given function f is defined as a pair of means. We are interested in the case when f has no fixed points. In turns out that in such a case continuous solutions of (1) depend on an arbitrary function.

Functional spaces and functional completion

Nachman Aronszajn, K. T. Smith (1956)

Annales de l'institut Fourier

Similarity:

Dans le travail présent nous considérons des classes linéaires fonctionnelles dont les fonctions sont définies sur un ensemble de base à l’exception d’un ensemble A appartenant à une classe 𝔞 d’ensemble ( A variant avec la fonction). Les notions d’une classe fonctionnelle normée et d’un espace fonctionnel sont introduites ensuite. Notre problème central est de trouver une complétion fonctionnelle ˜ d’une classe fonctionnelle normée (c’est-à-dire un espace fonctionnel complet ˜ dont...