The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Menger curves in Peano continua”

On the LC1-spaces which are Cantor or arcwise homogeneous

Hanna Patkowska (1993)

Fundamenta Mathematicae

Similarity:

A space X containing a Cantor set (an arc) is Cantor (arcwise) homogeneousiff for any two Cantor sets (arcs) A,B ⊂ X there is an autohomeomorphism h of X such that h(A)=B. It is proved that a continuum (an arcwise connected continuum) X such that either dim X=1 or X L C 1 is Cantor (arcwise) homogeneous iff X is a closed manifold of dimension at most 2.

On a compactification of the homeomorphism group of the pseudo-arc

Kazuhiro Kawamura (1991)

Colloquium Mathematicae

Similarity:

A continuum means a compact connected metric space. For a continuum X, H(X) denotes the space of all homeomorphisms of X with the compact-open topology. It is well known that H(X) is a completely metrizable, separable topological group. J. Kennedy [8] considered a compactification of H(X) and studied its properties when X has various types of homogeneity. In this paper we are concerned with the compactification G P of the homeomorphism group of the pseudo-arc P, which is obtained by the...

Strongly chaotic dendrites

J. Charatonik, W. Charatonik (1996)

Colloquium Mathematicae

Similarity:

The concept of a strongly chaotic space is introduced, and its relations to chaotic, rigid and strongly rigid spaces are studied. Some sufficient as well as necessary conditions are shown for a dendrite to be strongly chaotic.

On self-homeomorphic dendrites

Janusz Jerzy Charatonik, Paweł Krupski (2002)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

It is shown that for every numbers m 1 , m 2 { 3 , , ω } there is a strongly self-homeomorphic dendrite which is not pointwise self-homeomorphic. The set of all points at which the dendrite is pointwise self-homeomorphic is characterized. A general method of constructing a large family of dendrites with the same property is presented.