Displaying similar documents to “Discontinuous quasilinear elliptic problems at resonance”

Existence and multiplicity results for nonlinear eigenvalue problems with discontinuities

Nikolaos Papageorgiou, Francesca Papalini (2000)

Annales Polonici Mathematici

Similarity:

We study eigenvalue problems with discontinuous terms. In particular we consider two problems: a nonlinear problem and a semilinear problem for elliptic equations. In order to study the existence of solutions we replace these two problems with their multivalued approximations and, for the first problem, we estabilish an existence result while for the second problem we prove the existence of multiple nontrivial solutions. The approach used is variational.

Multiple solutions for nonlinear discontinuous elliptic problems near resonance

Nikolaos Kourogenis, Nikolaos Papageorgiou (1999)

Colloquium Mathematicae

Similarity:

We consider a quasilinear elliptic eigenvalue problem with a discontinuous right hand side. To be able to have an existence theory, we pass to a multivalued problem (elliptic inclusion). Using a variational approach based on the critical point theory for locally Lipschitz functions, we show that we have at least three nontrivial solutions when λ λ 1 from the left, λ 1 being the principal eigenvalue of the p-Laplacian with the Dirichlet boundary conditions.

Clarke critical values of subanalytic Lipschitz continuous functions

Jérôme Bolte, Aris Daniilidis, Adrian Lewis, Masahiro Shiota (2005)

Annales Polonici Mathematici

Similarity:

The main result of this note asserts that for any subanalytic locally Lipschitz function the set of its Clarke critical values is locally finite. The proof relies on Pawłucki's extension of the Puiseux lemma. In the last section we give an example of a continuous subanalytic function which is not constant on a segment of "broadly critical" points, that is, points for which we can find arbitrarily short convex combinations of gradients at nearby points.

A critical point result for non-differentiable indefinite functionals

Salvatore A. Marano, Dumitru Motreanu (2004)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper, two deformation lemmas concerning a family of indefinite, non necessarily continuously differentiable functionals are proved. A critical point theorem, which extends the classical result of Benci-Rabinowitz [14, Theorem 5.29] to the above-mentioned setting, is then deduced.

A Note on Coercivity of Lower Semicontinuous Functions and Nonsmooth Critical Point Theory

Corvellec, J. (1996)

Serdica Mathematical Journal

Similarity:

The first motivation for this note is to obtain a general version of the following result: let E be a Banach space and f : E → R be a differentiable function, bounded below and satisfying the Palais-Smale condition; then, f is coercive, i.e., f(x) goes to infinity as ||x|| goes to infinity. In recent years, many variants and extensions of this result appeared, see [3], [5], [6], [9], [14], [18], [19] and the references therein. A general result of this type was given in [3, Theorem 5.1]...