The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On residually finite groups and their generalizations”

Normal Subgroup of Product of Groups

Hiroyuki Okazaki, Kenichi Arai, Yasunari Shidama (2011)

Formalized Mathematics

Similarity:

In [6] it was formalized that the direct product of a family of groups gives a new group. In this article, we formalize that for all j ∈ I, the group G = Πi∈IGi has a normal subgroup isomorphic to Gj. Moreover, we show some relations between a family of groups and its direct product.

On three-dimensional space groups.

Conway, John H., Delgado Friedrichs, Olaf, Huson, Daniel H., Thurston, William P. (2001)

Beiträge zur Algebra und Geometrie

Similarity:

Sylow 2-subgroups of solvable Q-groups.

Mohammad Reza Darafsheh, H. Sharifi (2007)

Extracta Mathematicae

Similarity:

A finite group whose irreducible characters are rational valued is called a rational or a Q-group. In this paper we obtain various results concerning the structure of a Sylow 2-subgroup of a solvable Q-group.

On Parabolic Subgroups and Hecke Algebras of some Fractal Groups

Bartholdi, Laurent, Grigorchuk, Rostislav (2002)

Serdica Mathematical Journal

Similarity:

* The authors thank the “Swiss National Science Foundation” for its support. We study the subgroup structure, Hecke algebras, quasi-regular representations, and asymptotic properties of some fractal groups of branch type. We introduce parabolic subgroups, show that they are weakly maximal, and that the corresponding quasi-regular representations are irreducible. These (infinite-dimensional) representations are approximated by finite-dimensional quasi-regular representations....

Classification of self-dual torsion-free LCA groups

S. Wu (1992)

Fundamenta Mathematicae

Similarity:

In this paper we seek to describe the structure of self-dual torsion-free LCA groups. We first present a proof of the structure theorem of self-dual torsion-free metric LCA groups. Then we generalize the structure theorem to a larger class of self-dual torsion-free LCA groups. We also give a characterization of torsion-free divisible LCA groups. Consequently, a complete classification of self-dual divisible LCA groups is obtained; and any self-dual torsion-free LCA group can be regarded...