The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Blow up, global existence and growth rate estimates in nonlinear parabolic systems”

Incidence structures of type ( p , n )

František Machala (2003)

Czechoslovak Mathematical Journal

Similarity:

Every incidence structure 𝒥 (understood as a triple of sets ( G , M , I ) , I G × M ) admits for every positive integer p an incidence structure 𝒥 p = ( G p , M p , I p ) where G p ( M p ) consists of all independent p -element subsets in G ( M ) and I p is determined by some bijections. In the paper such incidence structures 𝒥 are investigated the 𝒥 p ’s of which have their incidence graphs of the simple join form. Some concrete illustrations are included with small sets G and M .

Global existence and blow up of solutions for a completely coupled Fujita type system of reaction-diffusion equations

Joanna Rencławowicz (1998)

Applicationes Mathematicae

Similarity:

We examine the parabolic system of three equations u t - Δu = v p , v t - Δv = w q , w t - Δw = u r , x ∈ N , t > 0 with p, q, r positive numbers, N ≥ 1, and nonnegative, bounded continuous initial values. We obtain global existence and blow up unconditionally (that is, for any initial data). We prove that if pqr ≤ 1 then any solution is global; when pqr > 1 and max(α,β,γ) ≥ N/2 (α, β, γ are defined in terms of p, q, r) then every nontrivial solution exhibits a finite blow up time.

The regularisation of the N -well problem by finite elements and by singular perturbation are scaling equivalent in two dimensions

Andrew Lorent (2009)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

Let K : = S O 2 A 1 S O 2 A 2 S O 2 A N where A 1 , A 2 , , A N are matrices of non-zero determinant. We establish a sharp relation between the following two minimisation problems in two dimensions. Firstly the N -well problem with surface energy. Let p 1 , 2 , Ω 2 be a convex polytopal region. Define I ϵ p u = Ω d p D u z , K + ϵ D 2 u z 2 d L 2 z and let A F denote the subspace of functions in W 2 , 2 Ω that satisfy the affine boundary condition D u = F on Ω (in the sense of trace), where F K . We consider the scaling (with respect to ϵ ) of m ϵ p : = inf u A F I ϵ p u . Secondly the finite...