On the axiom of determinateness
Jan Mycielski (1964)
Fundamenta Mathematicae
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Jan Mycielski (1964)
Fundamenta Mathematicae
Similarity:
Andreas Blass, Ioanna M. Dimitriou, Benedikt Löwe (2007)
Fundamenta Mathematicae
Similarity:
We consider four notions of strong inaccessibility that are equivalent in ZFC and show that they are not equivalent in ZF.
Uri Abraham, Saharon Shelah (2001)
Fundamenta Mathematicae
Similarity:
Assuming the continuum hypothesis there is an inseparable sequence of length ω₁ that contains no Lusin subsequence, while if Martin's Axiom and ¬ CH are assumed then every inseparable sequence (of length ω₁) is a union of countably many Lusin subsequences.
Alfred Tarski (1939)
Fundamenta Mathematicae
Similarity:
P. Andrews (1963)
Fundamenta Mathematicae
Similarity:
W. Reinhardt (1974)
Fundamenta Mathematicae
Similarity:
J. Truss (1978)
Fundamenta Mathematicae
Similarity:
A. Lévy (1962)
Fundamenta Mathematicae
Similarity:
Alexander Abian, Paula Kemp (1992)
Publications de l'Institut Mathématique
Similarity:
Alexander Häussler (1983)
Fundamenta Mathematicae
Similarity:
A. Lévy (1964)
Fundamenta Mathematicae
Similarity:
Rolando Chuaqui
Similarity:
CONTENTSIntroduction............................................................................................................ 5I. Axiom system and elementary consequences........................................... 61. Axioms........................................................................................................................ 62. Definitions and elementary consequences........................................................ 9II. Principles of definitions by recursion..............................................................