On the axiom of determinateness
Jan Mycielski (1964)
Fundamenta Mathematicae
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Jan Mycielski (1964)
Fundamenta Mathematicae
Similarity:
Andreas Blass, Ioanna M. Dimitriou, Benedikt Löwe (2007)
Fundamenta Mathematicae
Similarity:
We consider four notions of strong inaccessibility that are equivalent in ZFC and show that they are not equivalent in ZF.
Uri Abraham, Saharon Shelah (2001)
Fundamenta Mathematicae
Similarity:
Assuming the continuum hypothesis there is an inseparable sequence of length ω₁ that contains no Lusin subsequence, while if Martin's Axiom and ¬ CH are assumed then every inseparable sequence (of length ω₁) is a union of countably many Lusin subsequences.
Alfred Tarski (1939)
Fundamenta Mathematicae
Similarity:
P. Andrews (1963)
Fundamenta Mathematicae
Similarity:
W. Reinhardt (1974)
Fundamenta Mathematicae
Similarity:
J. Truss (1978)
Fundamenta Mathematicae
Similarity:
A. Lévy (1962)
Fundamenta Mathematicae
Similarity:
Alexander Abian, Paula Kemp (1992)
Publications de l'Institut Mathématique
Similarity:
Alexander Häussler (1983)
Fundamenta Mathematicae
Similarity:
A. Lévy (1964)
Fundamenta Mathematicae
Similarity:
Rolando Chuaqui
Similarity:
CONTENTSIntroduction............................................................................................................ 5I. Axiom system and elementary consequences........................................... 61. Axioms........................................................................................................................ 62. Definitions and elementary consequences........................................................ 9II. Principles of definitions by recursion..............................................................