The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Cardinal functions on compact F-spaces and on weakly countably complete Boolean algebras”

σ-Entangled linear orders and narrowness of products of Boolean algebras

Saharon Shelah (1997)

Fundamenta Mathematicae

Similarity:

We investigate σ-entangled linear orders and narrowness of Boolean algebras. We show existence of σ-entangled linear orders in many cardinals, and we build Boolean algebras with neither large chains nor large pies. We study the behavior of these notions in ultraproducts.

Constructions of thin-tall Boolean spaces.

Juan Carlos Martínez (2003)

Revista Matemática Complutense

Similarity:

This is an expository paper about constructions of locally compact, Hausdorff, scattered spaces whose Cantor-Bendixson height has cardinality greater than their Cantor-Bendixson width.

On Monk’s questions

Saharon Shelah (1996)

Fundamenta Mathematicae

Similarity:

We deal with Boolean algebras and their cardinal functions: π-weight π and π-character πχ. We investigate the spectrum of π-weights of subalgebras of a Boolean algebra B. Next we show that the π-character of an ultraproduct of Boolean algebras may be different from the ultraproduct of the π-characters of the factors.

Tightness and π-character in centered spaces

Murray Bell (1999)

Colloquium Mathematicae

Similarity:

We continue an investigation into centered spaces, a generalization of dyadic spaces. The presence of large Cantor cubes in centered spaces is deduced from tightness considerations. It follows that for centered spaces X, πχ(X) = t(X), and if X has uncountable tightness, then t(X) = supκ : 2 κ ⊂ X. The relationships between 9 popular cardinal functions for the class of centered spaces are justified. An example is constructed which shows, unlike the dyadic and polyadic properties, that the...