On the span of weakly-chainable continua
Lex Oversteegen, E. Tymchatyn (1983)
Fundamenta Mathematicae
Similarity:
Lex Oversteegen, E. Tymchatyn (1983)
Fundamenta Mathematicae
Similarity:
Lex Oversteegen, E. Tymchatyn (1984)
Fundamenta Mathematicae
Similarity:
Lee Mohler, Lex Oversteegen (1984)
Fundamenta Mathematicae
Similarity:
W. Ingram (1974)
Fundamenta Mathematicae
Similarity:
James Davis, W. Ingram (1988)
Fundamenta Mathematicae
Similarity:
Wojciech Dębski, J. Heath, J. Mioduszewski (1992)
Fundamenta Mathematicae
Similarity:
It is known that no dendrite (Gottschalk 1947) and no hereditarily indecomposable tree-like continuum (J. Heath 1991) can be the image of a continuum under an exactly 2-to-1 (continuous) map. This paper enlarges the class of tree-like continua satisfying this property, namely to include those tree-like continua whose nondegenerate proper subcontinua are arcs. This includes all Knaster continua and Ingram continua. The conjecture that all tree-like continua have this property, stated...
Taras Banakh, Zdzisław Kosztołowicz, Sławomir Turek (2011)
Colloquium Mathematicae
Similarity:
We prove that a continuum X is tree-like (resp. circle-like, chainable) if and only if for each open cover 𝓤₄ = {U₁,U₂,U₃,U₄} of X there is a 𝓤₄-map f: X → Y onto a tree (resp. onto the circle, onto the interval). A continuum X is an acyclic curve if and only if for each open cover 𝓤₃ = {U₁,U₂,U₃} of X there is a 𝓤₃-map f: X → Y onto a tree (or the interval [0,1]).
W. Ingram (1972)
Fundamenta Mathematicae
Similarity:
Charatonik, Janusz J. (1998)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Eldon Vought, Van Nall (1991)
Fundamenta Mathematicae
Similarity:
A. Lelek (1978)
Fundamenta Mathematicae
Similarity:
Roman Mańka (1990)
Fundamenta Mathematicae
Similarity: