Exactly two-to-one maps from continua onto some tree-like continua
Wojciech Dębski; J. Heath; J. Mioduszewski
Fundamenta Mathematicae (1992)
- Volume: 141, Issue: 3, page 269-276
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topDębski, Wojciech, Heath, J., and Mioduszewski, J.. "Exactly two-to-one maps from continua onto some tree-like continua." Fundamenta Mathematicae 141.3 (1992): 269-276. <http://eudml.org/doc/211965>.
@article{Dębski1992,
abstract = {It is known that no dendrite (Gottschalk 1947) and no hereditarily indecomposable tree-like continuum (J. Heath 1991) can be the image of a continuum under an exactly 2-to-1 (continuous) map. This paper enlarges the class of tree-like continua satisfying this property, namely to include those tree-like continua whose nondegenerate proper subcontinua are arcs. This includes all Knaster continua and Ingram continua. The conjecture that all tree-like continua have this property, stated by S. Nadler Jr. and L. E. Ward Jr. (1983), is still neither confirmed nor rejected.},
author = {Dębski, Wojciech, Heath, J., Mioduszewski, J.},
journal = {Fundamenta Mathematicae},
keywords = {Knaster continua; Ingram continua; 2-to-1 map; two-to-one maps; tree-like continua},
language = {eng},
number = {3},
pages = {269-276},
title = {Exactly two-to-one maps from continua onto some tree-like continua},
url = {http://eudml.org/doc/211965},
volume = {141},
year = {1992},
}
TY - JOUR
AU - Dębski, Wojciech
AU - Heath, J.
AU - Mioduszewski, J.
TI - Exactly two-to-one maps from continua onto some tree-like continua
JO - Fundamenta Mathematicae
PY - 1992
VL - 141
IS - 3
SP - 269
EP - 276
AB - It is known that no dendrite (Gottschalk 1947) and no hereditarily indecomposable tree-like continuum (J. Heath 1991) can be the image of a continuum under an exactly 2-to-1 (continuous) map. This paper enlarges the class of tree-like continua satisfying this property, namely to include those tree-like continua whose nondegenerate proper subcontinua are arcs. This includes all Knaster continua and Ingram continua. The conjecture that all tree-like continua have this property, stated by S. Nadler Jr. and L. E. Ward Jr. (1983), is still neither confirmed nor rejected.
LA - eng
KW - Knaster continua; Ingram continua; 2-to-1 map; two-to-one maps; tree-like continua
UR - http://eudml.org/doc/211965
ER -
References
top- [1] D. Fox, k-to-1 continuous transformations, Dissertation, Univ. of California at Riverside, 1973.
- [2] W. H. Gottschalk, On k-to-1 transformations, Bull. Amer. Math. Soc. 53 (1947), 168-169. Zbl0040.25402
- [3] J. Grispolakis and E. D. Tymchatyn, Continua which are images of weakly confluent mappings only (I), Houston J. Math. 5 (1979), 483-501. Zbl0412.54039
- [4] J. Heath, Tree-like continua and exactly k-to-1 functions, Proc. Amer. Math. Soc. 105 (1989), 765-772. Zbl0664.54008
- [5] J. Heath, 2-to-1 maps with hereditarily indecomposable images, ibid. 113 (1991), 839-846. Zbl0738.54012
- [6] W. T. Ingram, An atriodic tree-like continuum with positive span, Fund. Math. 77 (1972), 99-107. Zbl0244.54023
- [7] T. Maćkowiak, Semiconfluent mappings and their invariants, ibid. 79 (1973), 251-264. Zbl0261.54011
- [8] S. B. Nadler, Jr. and L. E. Ward, Jr., Concerning exactly (n,1) images of continua, Proc. Amer. Math. Soc. 87 (1983), 351-354. Zbl0503.54018
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.