The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On locally nonexpansive mappings and local isometries”

A fixed point theorem for nonexpansive compact self-mapping

T. D. Narang (2014)

Annales UMCS, Mathematica

Similarity:

A mapping T from a topological space X to a topological space Y is said to be compact if T(X) is contained in a compact subset of Y . The aim of this paper is to prove the existence of fixed points of a nonexpansive compact self-mapping defined on a closed subset having a contractive jointly continuous family when the underlying space is a metric space. The proved result generalizes and extends several known results on the subject

A note on Picard iterates of nonexpansive mappings

Eun Suk Kim, W. A. Kirk (2001)

Annales Polonici Mathematici

Similarity:

Let X be a Banach space, C a closed subset of X, and T:C → C a nonexpansive mapping. It has recently been shown that if X is reflexive and locally uniformly convex and if the fixed point set F(T) of T has nonempty interior then the Picard iterates of the mapping T always converge to a point of F(T). In this paper it is shown that if T is assumed to be asymptotically regular, this condition can be weakened much further. Finally, some observations are made about the geometric conditions...