Displaying similar documents to “Sur le phénomène de Gibbs dans la théorie des séries de fonctions continues”

Sur les fonctions harmoniques conjuguées et les séries de Fourier

A. Kolmogoroff (1925)

Fundamenta Mathematicae

Similarity:

Théorème: Si f(θ) est une fonction sommable, si de plus f(ρ,θ)=1/(2π) ∫_(-π}^(+π) f(α) (1-ρ^2)/(1+ρ^2-2ρ cos(α-θ))dα, alors, z tendant vers e^(iθ) le long d'un chemin quelconque non tangent à la circonférence, la fonction harmonique g(z) conjuguée à f(z) tend pour presque toutes les valeurs de θ vers une limite déterminée g(θ)= - 1/(2π) ∫_(-π}^(+π) f(θ+α)/tg((α)/2)dα, l'integrale etant comprise comme lim_(ϵ → 0) ∫_(-π)^(+ϵ)∫_(-ϵ)^(+π). Le but de cette note est de démontrer que la fonction...

Sur les séries de fonctions orthogonales

D. Menchoff (1926)

Fundamenta Mathematicae

Similarity:

Cet article est un suite d'une étude "Sur les séries de fonctions orthogonales" parus au tome VII des cet journal. Soit ϕ_1(x),ϕ_2(x),ϕ_3(x),...,ϕ_n(x),... (1) un système norme de fonctions orthogonales, et soient a_1,a_2,a_3,...,a_n,... (2) des constantes réelles quelconques. L'auteur a démontrée dans la première parties de son ouvrage qu'il existe une série ∑_{n=1}^{∞}a_n · ϕ_n(x) (3) divergente partout, tandis que la série ∑_{n=1}^{∞}a_n^2 (4) converge. Le but principal de cette étude...