The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A Nielsen theory for intersection numbers”

Spaces of polynomials with roots of bounded multiplicity

M. Guest, A. Kozlowski, K. Yamaguchi (1999)

Fundamenta Mathematicae

Similarity:

We describe an alternative approach to some results of Vassiliev ([Va1]) on spaces of polynomials, by applying the "scanning method" used by Segal ([Se2]) in his investigation of spaces of rational functions. We explain how these two approaches are related by the Smale-Hirsch Principle or the h-Principle of Gromov. We obtain several generalizations, which may be of interest in their own right.

Embedding partially ordered sets into ω ω

Ilijas Farah (1996)

Fundamenta Mathematicae

Similarity:

We investigate some natural questions about the class of posets which can be embedded into ⟨ω,≤*⟩. Our main tool is a simple ccc forcing notion H E which generically embeds a given poset E into ⟨ω,≤*⟩ and does this in a “minimal” way (see Theorems 9.1, 10.1, 6.1 and 9.2).