Embedding partially ordered sets into ω ω

Ilijas Farah

Fundamenta Mathematicae (1996)

  • Volume: 151, Issue: 1, page 53-95
  • ISSN: 0016-2736

Abstract

top
We investigate some natural questions about the class of posets which can be embedded into ⟨ω,≤*⟩. Our main tool is a simple ccc forcing notion H E which generically embeds a given poset E into ⟨ω,≤*⟩ and does this in a “minimal” way (see Theorems 9.1, 10.1, 6.1 and 9.2).

How to cite

top

Farah, Ilijas. "Embedding partially ordered sets into $^ω ω$." Fundamenta Mathematicae 151.1 (1996): 53-95. <http://eudml.org/doc/212183>.

@article{Farah1996,
abstract = {We investigate some natural questions about the class of posets which can be embedded into ⟨ω,≤*⟩. Our main tool is a simple ccc forcing notion $H_E$ which generically embeds a given poset E into ⟨ω,≤*⟩ and does this in a “minimal” way (see Theorems 9.1, 10.1, 6.1 and 9.2).},
author = {Farah, Ilijas},
journal = {Fundamenta Mathematicae},
keywords = {embedding; game; consistency; JFM 34.0077.02; JFM 40.0446.02; partially ordered set; gaps; unbounded chains; well-ordered chains; Cohen real},
language = {eng},
number = {1},
pages = {53-95},
title = {Embedding partially ordered sets into $^ω ω$},
url = {http://eudml.org/doc/212183},
volume = {151},
year = {1996},
}

TY - JOUR
AU - Farah, Ilijas
TI - Embedding partially ordered sets into $^ω ω$
JO - Fundamenta Mathematicae
PY - 1996
VL - 151
IS - 1
SP - 53
EP - 95
AB - We investigate some natural questions about the class of posets which can be embedded into ⟨ω,≤*⟩. Our main tool is a simple ccc forcing notion $H_E$ which generically embeds a given poset E into ⟨ω,≤*⟩ and does this in a “minimal” way (see Theorems 9.1, 10.1, 6.1 and 9.2).
LA - eng
KW - embedding; game; consistency; JFM 34.0077.02; JFM 40.0446.02; partially ordered set; gaps; unbounded chains; well-ordered chains; Cohen real
UR - http://eudml.org/doc/212183
ER -

References

top
  1. [1] B. Balcar, T. Jech and J. Zapletal, Semicohen Boolean algebras, preprint, 1995. 
  2. [2] J. Baumgartner and R. Laver, Iterated perfect-set forcing, Ann. Math. Logic 17 (1979), 271-288. Zbl0427.03043
  3. [3] J. Brendle and T. LaBerge, Forcing tightness in products, preprint, 1994. Zbl0867.54002
  4. [4] M. Burke, Notes on embedding partially ordered sets into ⟨ω,<*⟩, preprint, 1995. 
  5. [5] J. Cummings, M. Scheepers and S. Shelah, Type rings, to appear. 
  6. [6] H. G. Dales and W. H. Woodin, An Introduction to Independence for Analysts, London Math. Soc. Lecture Note Ser. 115, Cambridge University Press, 1987. 
  7. [7] P. L. Dordal, Towers in [ ω ] ω and ω, Ann. Pure Appl. Logic 45 (1989), 247-277. 
  8. [8] W. B. Easton, Powers of regular cardinals, Ann. Math. Logic 1 (1970), 139-178. Zbl0209.30601
  9. [9] P. Erdős, A. Hajnal, A. Maté and R. Rado, Combinatorial Set Theory - Parti- tion Relations for Cardinals, North-Holland, 1984. Zbl0573.03019
  10. [10] F. Galvin, Letter of August 3, 1995. 
  11. [11] F. Galvin, Letter of August 5, 1995. 
  12. [12] F. Hausdorff, Die Graduierung nach dem Endverlauf, Abh. Königl. Sächs. Gesell. Wiss. Math.-Phys. Kl. 31 (1909), 296-334. Zbl40.0446.02
  13. [13] S. Hechler, On the existence of certain cofinal subsets of ω, in: Proc. Sympos. Pure Math. 13, Amer. Math. Soc., 1974, 155-173. 
  14. [14] S. Koppelberg and S. Shelah, Subalgebras of Cohen algebras need not be Cohen, preprint, 1995. Zbl0864.06006
  15. [15] D. W. Kueker, Countable approximations and Löwenheim-Skolem theorems, Ann. Math. Logic 11 (1977), 77-103. Zbl0364.02009
  16. [16] K. Kunen, Inaccessibility properties of cardinals, Ph.D. thesis, Stanford University, 1968. 
  17. [17] K. Kunen, ⟨κ,λ*⟩-gaps under MA, preprint, 1976. 
  18. [18] K. Kunen, Set Theory - An Introduction to Independence Proofs, North-Holland, 1980. Zbl0443.03021
  19. [19] G. Kurepa, L'hypothèse du continu et le problème de Souslin, Publ. Inst. Math. Belgrade 2 (1948), 26-36. 
  20. [20] R. Laver, Linear orderings in ω under eventual dominance, in: Logic Colloquium '78, North-Holland, 1979, 299-302. 
  21. [21] J. C. Oxtoby, Measure and Category, Springer, 1970. 
  22. [22] K. Prikry, Changing measurable into accessible cardinals, Dissertationes Math. (Rozprawy Mat.) 68 (1970). Zbl0212.32404
  23. [23] F. Rothberger, Sur les familles indénombrables de suites de nombres naturels et les problèmes concernant la propriété C, Proc. Cambridge Philos. Soc. 37 (1941), 109-126. Zbl67.0990.01
  24. [24] M. Scheepers, Gaps in ω, in: Israel Math. Conf. Proc. 6, Amer. Math. Soc., 1993, 439-561. 
  25. [25] M. Scheepers, Cardinals of countable cofinality and eventual domination, Order 11 (1995), 221-235. Zbl0817.06003
  26. [26] M. Scheepers, The Boise problem book, http://www.unipissing.ca/topology/. 
  27. [27] R. Solovay, Discontinuous homomorphisms of Banach algebras, preprint, 1976. 
  28. [28] S. Todorčević, Special square sequences, Proc. Amer. Math. Soc. 105 (1989), 199-205. Zbl0675.03028
  29. [29] S. Todorčević and I. Farah, Some Applications of the Method of Forcing, Mathematical Institute, Belgrade, and Yenisei, Moscow, 1995. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.