Embedding partially ordered sets into
Fundamenta Mathematicae (1996)
- Volume: 151, Issue: 1, page 53-95
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topFarah, Ilijas. "Embedding partially ordered sets into $^ω ω$." Fundamenta Mathematicae 151.1 (1996): 53-95. <http://eudml.org/doc/212183>.
@article{Farah1996,
abstract = {We investigate some natural questions about the class of posets which can be embedded into ⟨ω,≤*⟩. Our main tool is a simple ccc forcing notion $H_E$ which generically embeds a given poset E into ⟨ω,≤*⟩ and does this in a “minimal” way (see Theorems 9.1, 10.1, 6.1 and 9.2).},
author = {Farah, Ilijas},
journal = {Fundamenta Mathematicae},
keywords = {embedding; game; consistency; JFM 34.0077.02; JFM 40.0446.02; partially ordered set; gaps; unbounded chains; well-ordered chains; Cohen real},
language = {eng},
number = {1},
pages = {53-95},
title = {Embedding partially ordered sets into $^ω ω$},
url = {http://eudml.org/doc/212183},
volume = {151},
year = {1996},
}
TY - JOUR
AU - Farah, Ilijas
TI - Embedding partially ordered sets into $^ω ω$
JO - Fundamenta Mathematicae
PY - 1996
VL - 151
IS - 1
SP - 53
EP - 95
AB - We investigate some natural questions about the class of posets which can be embedded into ⟨ω,≤*⟩. Our main tool is a simple ccc forcing notion $H_E$ which generically embeds a given poset E into ⟨ω,≤*⟩ and does this in a “minimal” way (see Theorems 9.1, 10.1, 6.1 and 9.2).
LA - eng
KW - embedding; game; consistency; JFM 34.0077.02; JFM 40.0446.02; partially ordered set; gaps; unbounded chains; well-ordered chains; Cohen real
UR - http://eudml.org/doc/212183
ER -
References
top- [1] B. Balcar, T. Jech and J. Zapletal, Semicohen Boolean algebras, preprint, 1995.
- [2] J. Baumgartner and R. Laver, Iterated perfect-set forcing, Ann. Math. Logic 17 (1979), 271-288. Zbl0427.03043
- [3] J. Brendle and T. LaBerge, Forcing tightness in products, preprint, 1994. Zbl0867.54002
- [4] M. Burke, Notes on embedding partially ordered sets into ⟨ω,<*⟩, preprint, 1995.
- [5] J. Cummings, M. Scheepers and S. Shelah, Type rings, to appear.
- [6] H. G. Dales and W. H. Woodin, An Introduction to Independence for Analysts, London Math. Soc. Lecture Note Ser. 115, Cambridge University Press, 1987.
- [7] P. L. Dordal, Towers in and ω, Ann. Pure Appl. Logic 45 (1989), 247-277.
- [8] W. B. Easton, Powers of regular cardinals, Ann. Math. Logic 1 (1970), 139-178. Zbl0209.30601
- [9] P. Erdős, A. Hajnal, A. Maté and R. Rado, Combinatorial Set Theory - Parti- tion Relations for Cardinals, North-Holland, 1984. Zbl0573.03019
- [10] F. Galvin, Letter of August 3, 1995.
- [11] F. Galvin, Letter of August 5, 1995.
- [12] F. Hausdorff, Die Graduierung nach dem Endverlauf, Abh. Königl. Sächs. Gesell. Wiss. Math.-Phys. Kl. 31 (1909), 296-334. Zbl40.0446.02
- [13] S. Hechler, On the existence of certain cofinal subsets of ω, in: Proc. Sympos. Pure Math. 13, Amer. Math. Soc., 1974, 155-173.
- [14] S. Koppelberg and S. Shelah, Subalgebras of Cohen algebras need not be Cohen, preprint, 1995. Zbl0864.06006
- [15] D. W. Kueker, Countable approximations and Löwenheim-Skolem theorems, Ann. Math. Logic 11 (1977), 77-103. Zbl0364.02009
- [16] K. Kunen, Inaccessibility properties of cardinals, Ph.D. thesis, Stanford University, 1968.
- [17] K. Kunen, ⟨κ,λ*⟩-gaps under MA, preprint, 1976.
- [18] K. Kunen, Set Theory - An Introduction to Independence Proofs, North-Holland, 1980. Zbl0443.03021
- [19] G. Kurepa, L'hypothèse du continu et le problème de Souslin, Publ. Inst. Math. Belgrade 2 (1948), 26-36.
- [20] R. Laver, Linear orderings in ω under eventual dominance, in: Logic Colloquium '78, North-Holland, 1979, 299-302.
- [21] J. C. Oxtoby, Measure and Category, Springer, 1970.
- [22] K. Prikry, Changing measurable into accessible cardinals, Dissertationes Math. (Rozprawy Mat.) 68 (1970). Zbl0212.32404
- [23] F. Rothberger, Sur les familles indénombrables de suites de nombres naturels et les problèmes concernant la propriété C, Proc. Cambridge Philos. Soc. 37 (1941), 109-126. Zbl67.0990.01
- [24] M. Scheepers, Gaps in ω, in: Israel Math. Conf. Proc. 6, Amer. Math. Soc., 1993, 439-561.
- [25] M. Scheepers, Cardinals of countable cofinality and eventual domination, Order 11 (1995), 221-235. Zbl0817.06003
- [26] M. Scheepers, The Boise problem book, http://www.unipissing.ca/topology/.
- [27] R. Solovay, Discontinuous homomorphisms of Banach algebras, preprint, 1976.
- [28] S. Todorčević, Special square sequences, Proc. Amer. Math. Soc. 105 (1989), 199-205. Zbl0675.03028
- [29] S. Todorčević and I. Farah, Some Applications of the Method of Forcing, Mathematical Institute, Belgrade, and Yenisei, Moscow, 1995.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.