Embedding partially ordered sets into ω ω

Ilijas Farah

Fundamenta Mathematicae (1996)

  • Volume: 151, Issue: 1, page 53-95
  • ISSN: 0016-2736

Abstract

top
We investigate some natural questions about the class of posets which can be embedded into ⟨ω,≤*⟩. Our main tool is a simple ccc forcing notion H E which generically embeds a given poset E into ⟨ω,≤*⟩ and does this in a “minimal” way (see Theorems 9.1, 10.1, 6.1 and 9.2).

How to cite

top

Farah, Ilijas. "Embedding partially ordered sets into $^ω ω$." Fundamenta Mathematicae 151.1 (1996): 53-95. <http://eudml.org/doc/212183>.

@article{Farah1996,
abstract = {We investigate some natural questions about the class of posets which can be embedded into ⟨ω,≤*⟩. Our main tool is a simple ccc forcing notion $H_E$ which generically embeds a given poset E into ⟨ω,≤*⟩ and does this in a “minimal” way (see Theorems 9.1, 10.1, 6.1 and 9.2).},
author = {Farah, Ilijas},
journal = {Fundamenta Mathematicae},
keywords = {embedding; game; consistency; JFM 34.0077.02; JFM 40.0446.02; partially ordered set; gaps; unbounded chains; well-ordered chains; Cohen real},
language = {eng},
number = {1},
pages = {53-95},
title = {Embedding partially ordered sets into $^ω ω$},
url = {http://eudml.org/doc/212183},
volume = {151},
year = {1996},
}

TY - JOUR
AU - Farah, Ilijas
TI - Embedding partially ordered sets into $^ω ω$
JO - Fundamenta Mathematicae
PY - 1996
VL - 151
IS - 1
SP - 53
EP - 95
AB - We investigate some natural questions about the class of posets which can be embedded into ⟨ω,≤*⟩. Our main tool is a simple ccc forcing notion $H_E$ which generically embeds a given poset E into ⟨ω,≤*⟩ and does this in a “minimal” way (see Theorems 9.1, 10.1, 6.1 and 9.2).
LA - eng
KW - embedding; game; consistency; JFM 34.0077.02; JFM 40.0446.02; partially ordered set; gaps; unbounded chains; well-ordered chains; Cohen real
UR - http://eudml.org/doc/212183
ER -

References

top
  1. [1] B. Balcar, T. Jech and J. Zapletal, Semicohen Boolean algebras, preprint, 1995. 
  2. [2] J. Baumgartner and R. Laver, Iterated perfect-set forcing, Ann. Math. Logic 17 (1979), 271-288. Zbl0427.03043
  3. [3] J. Brendle and T. LaBerge, Forcing tightness in products, preprint, 1994. Zbl0867.54002
  4. [4] M. Burke, Notes on embedding partially ordered sets into ⟨ω,<*⟩, preprint, 1995. 
  5. [5] J. Cummings, M. Scheepers and S. Shelah, Type rings, to appear. 
  6. [6] H. G. Dales and W. H. Woodin, An Introduction to Independence for Analysts, London Math. Soc. Lecture Note Ser. 115, Cambridge University Press, 1987. 
  7. [7] P. L. Dordal, Towers in [ ω ] ω and ω, Ann. Pure Appl. Logic 45 (1989), 247-277. 
  8. [8] W. B. Easton, Powers of regular cardinals, Ann. Math. Logic 1 (1970), 139-178. Zbl0209.30601
  9. [9] P. Erdős, A. Hajnal, A. Maté and R. Rado, Combinatorial Set Theory - Parti- tion Relations for Cardinals, North-Holland, 1984. Zbl0573.03019
  10. [10] F. Galvin, Letter of August 3, 1995. 
  11. [11] F. Galvin, Letter of August 5, 1995. 
  12. [12] F. Hausdorff, Die Graduierung nach dem Endverlauf, Abh. Königl. Sächs. Gesell. Wiss. Math.-Phys. Kl. 31 (1909), 296-334. Zbl40.0446.02
  13. [13] S. Hechler, On the existence of certain cofinal subsets of ω, in: Proc. Sympos. Pure Math. 13, Amer. Math. Soc., 1974, 155-173. 
  14. [14] S. Koppelberg and S. Shelah, Subalgebras of Cohen algebras need not be Cohen, preprint, 1995. Zbl0864.06006
  15. [15] D. W. Kueker, Countable approximations and Löwenheim-Skolem theorems, Ann. Math. Logic 11 (1977), 77-103. Zbl0364.02009
  16. [16] K. Kunen, Inaccessibility properties of cardinals, Ph.D. thesis, Stanford University, 1968. 
  17. [17] K. Kunen, ⟨κ,λ*⟩-gaps under MA, preprint, 1976. 
  18. [18] K. Kunen, Set Theory - An Introduction to Independence Proofs, North-Holland, 1980. Zbl0443.03021
  19. [19] G. Kurepa, L'hypothèse du continu et le problème de Souslin, Publ. Inst. Math. Belgrade 2 (1948), 26-36. 
  20. [20] R. Laver, Linear orderings in ω under eventual dominance, in: Logic Colloquium '78, North-Holland, 1979, 299-302. 
  21. [21] J. C. Oxtoby, Measure and Category, Springer, 1970. 
  22. [22] K. Prikry, Changing measurable into accessible cardinals, Dissertationes Math. (Rozprawy Mat.) 68 (1970). Zbl0212.32404
  23. [23] F. Rothberger, Sur les familles indénombrables de suites de nombres naturels et les problèmes concernant la propriété C, Proc. Cambridge Philos. Soc. 37 (1941), 109-126. Zbl67.0990.01
  24. [24] M. Scheepers, Gaps in ω, in: Israel Math. Conf. Proc. 6, Amer. Math. Soc., 1993, 439-561. 
  25. [25] M. Scheepers, Cardinals of countable cofinality and eventual domination, Order 11 (1995), 221-235. Zbl0817.06003
  26. [26] M. Scheepers, The Boise problem book, http://www.unipissing.ca/topology/. 
  27. [27] R. Solovay, Discontinuous homomorphisms of Banach algebras, preprint, 1976. 
  28. [28] S. Todorčević, Special square sequences, Proc. Amer. Math. Soc. 105 (1989), 199-205. Zbl0675.03028
  29. [29] S. Todorčević and I. Farah, Some Applications of the Method of Forcing, Mathematical Institute, Belgrade, and Yenisei, Moscow, 1995. 

NotesEmbed ?

top

You must be logged in to post comments.