Problèmes
Casimir Kuratowski, Paul Urysohn, Hugo Steinhaus (1923)
Fundamenta Mathematicae
Similarity:
Casimir Kuratowski, Paul Urysohn, Hugo Steinhaus (1923)
Fundamenta Mathematicae
Similarity:
Wacław Sierpiński (1929)
Fundamenta Mathematicae
Similarity:
Wacław Sierpiński (1938)
Fundamenta Mathematicae
Similarity:
Wacław Sierpiński (1934)
Fundamenta Mathematicae
Similarity:
Stanisław Ruziewicz, Wacław Sierpiński (1932)
Fundamenta Mathematicae
Similarity:
Wacław Sierpiński (1928)
Fundamenta Mathematicae
Similarity:
Wacław Sierpiński (1923)
Fundamenta Mathematicae
Similarity:
Le but de cette note est de démontrer le suivant: Théorème 1: (1) Il existe une décomposition du plan en une somme de trois ensembles dont chacun est homéomorphe d'un ensemble linéaire, (2) Il n'existe aucune décomposition du plan en une somme de deux ensembles dont chacun soit homéomorphe d'un ensemble linéaire, (3) Il existe dans le plan un ensemble connexe qui est une somme d'une infinité dénombrable d'ensembles séparés deux a deux. et de construire des ensembles plans possédant quelques...
Wacław Sierpiński (1936)
Fundamenta Mathematicae
Similarity:
Stefan Mazurkiewicz (1924)
Fundamenta Mathematicae
Similarity:
Madame Anna Mullikin a démontre le théorème suivant: Théorème: Si M est la somme d'une infinité dénombrable d'ensembles fermes sans points communs deux a deux: M_1,M_2,... dont aucun ne décompose pas (disconnects) un plan S, alors M ne décompose S. Le but de cette note est de donner une nouvelle démonstration de ce théorème.