The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Quelques propriétés caractéristiques de la dimension”

Mémoire sur les multiplicités Cantoriennes

Paul Urysohn (1925)

Fundamenta Mathematicae

Similarity:

Cet article est une étude détaillée sur certaines problèmes de topologie. En particulier l'auteur étudie les problèmes suivantes: Problème: (J_n) Donner une définition purement géométrique des multiplicités Jordaniennes n-dimensionnelles. Problème: Indiquer les ensembles les plus généraux qui méritent encore d'être appelés lignes, surfaces etc. Problème: Donner une nouvelle définition des lignes Cantoriennes. Dans le première chapitre l'auteur donne quelques définition fondamentales....

Les opérateurs semi-Fredholm sur des espaces de Hilbert non séparables

Haïkel Skihri (1999)

Studia Mathematica

Similarity:

The aim of this paper is to study the α-semi-Fredholm operators in a nonseparable Hilbert space H for all cardinals α with 0 α d i m H . In the first part, we find the relation between γ α ( T ) and c ( π α ( T ) ) for all 0 -regular cardinals α, where γ α is the reduced minimum modulus of weight α, c is the reduced minimum modulus (in a C*-algebra) and π α is the canonical surjection from B(H) onto C α ( H ) = B ( H ) / K α ( H ) . We study the continuity points of the maps c α : T c ( π α ( T ) ) and γ α : T γ α ( T ) . In the second part, we prove some approximation results for semi-Fredholm...