A Monogenic Baire Measure Need Not Be Completion Regular
Zdena Riečanová (1974)
Matematický časopis
Similarity:
Zdena Riečanová (1974)
Matematický časopis
Similarity:
Vladimír Olejček (1974)
Matematický časopis
Similarity:
A. Abian (1979)
Publications de l'Institut Mathématique [Elektronische Ressource]
Similarity:
John Morgan (1977)
Fundamenta Mathematicae
Similarity:
David Buhagiar, Emmanuel Chetcuti, Anatolij Dvurečenskij (2005)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
It is shown that Čech completeness, ultracompleteness and local compactness can be defined by demanding that certain equivalences hold between certain classes of Baire measures or by demanding that certain classes of Baire measures have non-empty support. This shows that these three topological properties are measurable, similarly to the classical examples of compact spaces, pseudo-compact spaces and realcompact spaces.
Menachem Kojman, Henryk Michalewski (2011)
Fundamenta Mathematicae
Similarity:
We prove: 1) Every Baire measure on the Kojman-Shelah Dowker space admits a Borel extension. 2) If the continuum is not real-valued-measurable then every Baire measure on M. E. Rudin's Dowker space admits a Borel extension. Consequently, Balogh's space remains the only candidate to be a ZFC counterexample to the measure extension problem of the three presently known ZFC Dowker spaces.
Jaroslav Lukeš, Luděk Zajíček (1977)
Commentationes Mathematicae Universitatis Carolinae
Similarity: