When finely continuous functions are of the first class of Baire

Jaroslav Lukeš; Luděk Zajíček

Commentationes Mathematicae Universitatis Carolinae (1977)

  • Volume: 018, Issue: 4, page 647-657
  • ISSN: 0010-2628

How to cite

top

Lukeš, Jaroslav, and Zajíček, Luděk. "When finely continuous functions are of the first class of Baire." Commentationes Mathematicae Universitatis Carolinae 018.4 (1977): 647-657. <http://eudml.org/doc/16860>.

@article{Lukeš1977,
author = {Lukeš, Jaroslav, Zajíček, Luděk},
journal = {Commentationes Mathematicae Universitatis Carolinae},
language = {eng},
number = {4},
pages = {647-657},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {When finely continuous functions are of the first class of Baire},
url = {http://eudml.org/doc/16860},
volume = {018},
year = {1977},
}

TY - JOUR
AU - Lukeš, Jaroslav
AU - Zajíček, Luděk
TI - When finely continuous functions are of the first class of Baire
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1977
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 018
IS - 4
SP - 647
EP - 657
LA - eng
UR - http://eudml.org/doc/16860
ER -

References

top
  1. H. BLUMBERG, A theorem on arbitrary functions of two variables with applications, Fund. Math. 16 (1930), 17-24. (1930) 
  2. C. CONSTANTINESCU A. CORNEA, Potential theory on harmonic spaces, Springer-Verlag, Berlin, 1972. (1972) MR0419799
  3. A. DENJOY, Sur les fonctions dérivées sommables, Bull. Soc. Math. France 43 (1916), 161-248. (1916) MR1504743
  4. B. FUGLEDE, The quasi topology associated with a countably subadditive set function, Ann. Inst. Fourier 21 (1971), 123-169. (1971) Zbl0197.19401MR0283158
  5. B. FUGLEDE, Connexion en topologie fine et balayage des mesures, Ann. Inst. Fourier 21 (1971), 227-244. (1971) Zbl0208.13802MR0344502
  6. B. FUGLEDE, Remarks on fine continuity and the base operation in potential theory, Math. Ann. 210 (1974), 207-212. (1974) Zbl0273.31014MR0357826
  7. C. GOFFMAN C. J. NEUGEBAUER, On approximate derivatives, Proc. Amer. Math. Soc. 11 (1960),962-966. (1960) MR0118792
  8. C. GOFFMAN C. NEUGEBAUER T. NISHIURA, Density topology and approximate continuity, Duke Math. J. 28 (1961), 497-505. (1961) MR0137805
  9. C. GOFFMAN D. WATERMAN, Approximately continuous transformations, Proc. Amer. Math. Soc. 12 (1961), 116-121. (1961) MR0120327
  10. O. HAUPT, Ch. PAUC, La topologie de Denjoy envisagée comme vraie topologie, C.R. Acad. Sci Paris 234 (1952), 390-392. (1952) MR0046408
  11. V. JARNÍK, Sur les fonctions de la première classe de Baire, Bull. Internat. Acad. Sci. Boheme (1926). (1926) 
  12. N. F. G. MARTIN, A topology for certain measure spaces, Trans. Amer. Math. Soc. 112 (1964), 1-18. (1964) Zbl0125.30402MR0161953
  13. L. MIŠÍK, Notes on an approximate derivative, Mat. časopis Sloven. Akad. Vied 22 (1972), 108-114. (1972) MR0315057
  14. I. NETUKA L. ZAJÍČEK, Functions continuous in the fiine topology for the heat equation, Časopis Pěst. Mat. 99 (1974), 300-306. (1974) MR0352505
  15. D. PREISS, Approximate derivative and Baire classes, Czechoslovak Math. J. 21 (1971), 373-382. (1971) MR0286951
  16. J. RIDDER, Über approximativ stetigen Funktionen, Fund. Math. 13 (1929), 201-209. (1929) 
  17. S. SAKS, Theory of the integral, New York, 1937. (1937) Zbl0017.30004
  18. L. E. SNYDER, The Baire classification of ordinary and approximate partial derivatives, Proc. Amer. Math. Soc. 17 (1966), 115-123. (1966) Zbl0142.30501MR0186768
  19. L. E. SNYDER, Approximate Stolz angle limits, Proc. Amer. Math. Soc. 17 (1966), 416-422. (1966) Zbl0158.05102MR0188383
  20. G. TOLSTOV, Sur la dérivée approximative exacte, Mat. Sb. 4 (1938), 499-504. (1938) Zbl0021.01602
  21. R. S. TROYER W. P. ZIEMER, Topologies generated by outer measures, J. Math. Mech. 12 (1963), 485-494. (1963) MR0147600

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.