When finely continuous functions are of the first class of Baire
Commentationes Mathematicae Universitatis Carolinae (1977)
- Volume: 018, Issue: 4, page 647-657
- ISSN: 0010-2628
Access Full Article
topHow to cite
topLukeš, Jaroslav, and Zajíček, Luděk. "When finely continuous functions are of the first class of Baire." Commentationes Mathematicae Universitatis Carolinae 018.4 (1977): 647-657. <http://eudml.org/doc/16860>.
@article{Lukeš1977,
author = {Lukeš, Jaroslav, Zajíček, Luděk},
journal = {Commentationes Mathematicae Universitatis Carolinae},
language = {eng},
number = {4},
pages = {647-657},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {When finely continuous functions are of the first class of Baire},
url = {http://eudml.org/doc/16860},
volume = {018},
year = {1977},
}
TY - JOUR
AU - Lukeš, Jaroslav
AU - Zajíček, Luděk
TI - When finely continuous functions are of the first class of Baire
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1977
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 018
IS - 4
SP - 647
EP - 657
LA - eng
UR - http://eudml.org/doc/16860
ER -
References
top- H. BLUMBERG, A theorem on arbitrary functions of two variables with applications, Fund. Math. 16 (1930), 17-24. (1930)
- C. CONSTANTINESCU A. CORNEA, Potential theory on harmonic spaces, Springer-Verlag, Berlin, 1972. (1972) MR0419799
- A. DENJOY, Sur les fonctions dérivées sommables, Bull. Soc. Math. France 43 (1916), 161-248. (1916) MR1504743
- B. FUGLEDE, The quasi topology associated with a countably subadditive set function, Ann. Inst. Fourier 21 (1971), 123-169. (1971) Zbl0197.19401MR0283158
- B. FUGLEDE, Connexion en topologie fine et balayage des mesures, Ann. Inst. Fourier 21 (1971), 227-244. (1971) Zbl0208.13802MR0344502
- B. FUGLEDE, Remarks on fine continuity and the base operation in potential theory, Math. Ann. 210 (1974), 207-212. (1974) Zbl0273.31014MR0357826
- C. GOFFMAN C. J. NEUGEBAUER, On approximate derivatives, Proc. Amer. Math. Soc. 11 (1960),962-966. (1960) MR0118792
- C. GOFFMAN C. NEUGEBAUER T. NISHIURA, Density topology and approximate continuity, Duke Math. J. 28 (1961), 497-505. (1961) MR0137805
- C. GOFFMAN D. WATERMAN, Approximately continuous transformations, Proc. Amer. Math. Soc. 12 (1961), 116-121. (1961) MR0120327
- O. HAUPT, Ch. PAUC, La topologie de Denjoy envisagée comme vraie topologie, C.R. Acad. Sci Paris 234 (1952), 390-392. (1952) MR0046408
- V. JARNÍK, Sur les fonctions de la première classe de Baire, Bull. Internat. Acad. Sci. Boheme (1926). (1926)
- N. F. G. MARTIN, A topology for certain measure spaces, Trans. Amer. Math. Soc. 112 (1964), 1-18. (1964) Zbl0125.30402MR0161953
- L. MIŠÍK, Notes on an approximate derivative, Mat. časopis Sloven. Akad. Vied 22 (1972), 108-114. (1972) MR0315057
- I. NETUKA L. ZAJÍČEK, Functions continuous in the fiine topology for the heat equation, Časopis Pěst. Mat. 99 (1974), 300-306. (1974) MR0352505
- D. PREISS, Approximate derivative and Baire classes, Czechoslovak Math. J. 21 (1971), 373-382. (1971) MR0286951
- J. RIDDER, Über approximativ stetigen Funktionen, Fund. Math. 13 (1929), 201-209. (1929)
- S. SAKS, Theory of the integral, New York, 1937. (1937) Zbl0017.30004
- L. E. SNYDER, The Baire classification of ordinary and approximate partial derivatives, Proc. Amer. Math. Soc. 17 (1966), 115-123. (1966) Zbl0142.30501MR0186768
- L. E. SNYDER, Approximate Stolz angle limits, Proc. Amer. Math. Soc. 17 (1966), 416-422. (1966) Zbl0158.05102MR0188383
- G. TOLSTOV, Sur la dérivée approximative exacte, Mat. Sb. 4 (1938), 499-504. (1938) Zbl0021.01602
- R. S. TROYER W. P. ZIEMER, Topologies generated by outer measures, J. Math. Mech. 12 (1963), 485-494. (1963) MR0147600
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.