The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Sur un problème de la théorie de la mesure. I”

Sur un problème de la théorie de la mesure. II

D. Mirimanoff (1923)

Fundamenta Mathematicae

Similarity:

Le but de cette note est de généraliser les résultats établis dans la note: "Sur un problème de la théorie de la mesure. I", publiée dans ce journal.

Un lemme métrique

Wacław Sierpiński (1923)

Fundamenta Mathematicae

Similarity:

Le but de cette note est de démontrer le lemme: Lemme: Soit E un ensemble linéaire borné et soit ℱ une famille d'intervalles, telle que tout point x de E est une extrémité gauche d'un au moins intervalle δ(x) de famille ℱ. Thèse: ϵ étant un nombre positif donné quelconque, il existe toujours un nombre fini N=N(ϵ) d'intervalles δ(x_1), δ(x_2),...,δ(x_N) de la famille ℱ, n'empiétant pas les uns sur les autres et tels que la mesure extérieure (lebesguienne) de l'ensemble de ces points de...

Sur la nature des fonctions à carré sommable et des ensembles mesurables

A. Besikovitch (1923)

Fundamenta Mathematicae

Similarity:

Théorème: Quelle que soit une fonction f(x) à carré sommable qu'on suppose définie aux points de l'intervalle (0,1) et nulle ailleurs, l'intégrale q(x) = ∫_0^1 (f(x+α)-f(x-α))/α dα considérée comme lim_{ϵ=0}∫_{ϵ}^1, est finie presque partout dans (0,1) et représente une fonction de x à carré sommable. Le but de cette note est de trouver une limite supérieure pour l'intégrale ∫_0^1[q(x)]^2dx, et de donner une démonstration du théoreme cité, en se servant d'une méthode des variables réelles...