Displaying similar documents to “On stability and products”

Constructing ω-stable structures: Computing rank

John T. Baldwin, Kitty Holland (2001)

Fundamenta Mathematicae

Similarity:

This is a sequel to [1]. Here we give careful attention to the difficulties of calculating Morley and U-rank of the infinite rank ω-stable theories constructed by variants of Hrushovski's methods. Sample result: For every k < ω, there is an ω-stable expansion of any algebraically closed field which has Morley rank ω × k. We include a corrected proof of the lemma in [1] establishing that the generic model is ω-saturated in the rank 2 case.

Small profinite m-stable groups

Frank O. Wagner (2003)

Fundamenta Mathematicae

Similarity:

A small profinite m-stable group has an open abelian subgroup of finite ℳ-rank and finite exponent.

Stable rank and real rank of compact transformation group C*-algebras

Robert J. Archbold, Eberhard Kaniuth (2006)

Studia Mathematica

Similarity:

Let (G,X) be a transformation group, where X is a locally compact Hausdorff space and G is a compact group. We investigate the stable rank and the real rank of the transformation group C*-algebra C₀(X)⋊ G. Explicit formulae are given in the case where X and G are second countable and X is locally of finite G-orbit type. As a consequence, we calculate the ranks of the group C*-algebra C*(ℝⁿ ⋊ G), where G is a connected closed subgroup of SO(n) acting on ℝⁿ by rotation.

On the unit-1-stable rank of rings of analytic functions.

Joan Josep Carmona, Julià Cufí, Pere Menal (1992)

Publicacions Matemàtiques

Similarity:

In this paper we prove a general result for the ring H(U) of the analytic functions on an open set U in the complex plane which implies that H(U) has not unit-1-stable rank and that has some other interesting consequences. We prove also that in H(U) there are no totally reducible elements different from the zero function.

The enriched stable core and the relative rigidity of HOD

Sy-David Friedman (2016)

Fundamenta Mathematicae

Similarity:

In the author's 2012 paper, the V-definable Stable Core 𝕊 = (L[S],S) was introduced. It was shown that V is generic over 𝕊 (for 𝕊-definable dense classes), each V-definable club contains an 𝕊-definable club, and the same holds with 𝕊 replaced by (HOD,S), where HOD denotes Gödel's inner model of hereditarily ordinal-definable sets. In the present article we extend this to models of class theory by introducing the V-definable Enriched Stable Core 𝕊* = (L[S*],S*). As an application...

On the number of countable models of stable theories

Predrag Tanović (2001)

Fundamenta Mathematicae

Similarity:

We prove: Theorem. If T is a countable, complete, stable, first-order theory having an infinite set of constants with different interpretations, then I(T,ℵ₀) ≥ ℵ₀.

Decompositions of saturated models of stable theories

M. C. Laskowski, S. Shelah (2006)

Fundamenta Mathematicae

Similarity:

We characterize the stable theories T for which the saturated models of T admit decompositions. In particular, we show that countable, shallow, stable theories with NDOP have this property.