Displaying similar documents to “Models of arithmetic and the 1-3-1 lattice”

On normal lattice configurations and simultaneously normal numbers

Mordechay B. Levin (2001)

Journal de théorie des nombres de Bordeaux

Similarity:

Let q , q 1 , , q s 2 be integers, and let α 1 , α 2 , be a sequence of real numbers. In this paper we prove that the lower bound of the discrepancy of the double sequence ( α m q n , , α m + s - 1 q n ) m , n = 1 M N coincides (up to a logarithmic factor) with the lower bound of the discrepancy of ordinary sequences ( x n ) n = 1 M N in s -dimensional unit cube ( s , M , N = 1 , 2 , ) . We also find a lower bound of the discrepancy (up to a logarithmic factor) of the sequence ( α 1 q 1 n , , α s q s n ) n = 1 N (Korobov’s problem).

The E and K functionals for the pair (X (A), l(B)).

Stefan Ericsson (1997)

Collectanea Mathematica

Similarity:

We prove some exact formulas for the E and K functionals for pairs of the type (X(A),l sub ∞ (B)) where X has the lattice property. These formulas are extensions of their well-known counterparts in the scalar valued case. In particular we generalize formulas by Pisier and by the present author.

Origami

Παναγιώτης Τελώνης (1989-1990)

Ευκλείδης Α

Similarity: