On normal lattice configurations and simultaneously normal numbers
Journal de théorie des nombres de Bordeaux (2001)
- Volume: 13, Issue: 2, page 483-527
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topLevin, Mordechay B.. "On normal lattice configurations and simultaneously normal numbers." Journal de théorie des nombres de Bordeaux 13.2 (2001): 483-527. <http://eudml.org/doc/248700>.
@article{Levin2001,
abstract = {Let $q, q_1, \dots , q_s \ge 2$ be integers, and let $\alpha _ 1, \alpha _2, \dots $ be a sequence of real numbers. In this paper we prove that the lower bound of the discrepancy of the double sequence\begin\{equation*\} (\left\lbrace \alpha \_mq^n\right\rbrace , \dots ,\left\lbrace \alpha \_\{m + s - 1\}q^n\right\rbrace )^\{MN\}\_\{m,n=1\} \end\{equation*\}coincides (up to a logarithmic factor) with the lower bound of the discrepancy of ordinary sequences $(xn)^\{MN\}_\{n=1\}$ in $s$-dimensional unit cube $(s,M,N = 1, 2,\dots )$. We also find a lower bound of the discrepancy (up to a logarithmic factor) of the sequence $(\left\lbrace \alpha _1 q^n_1\right\rbrace , \dots , \left\lbrace \alpha _s q^n_s\right\rbrace )^N_\{n=1\}$ (Korobov’s problem).},
author = {Levin, Mordechay B.},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {normal numbers; two-dimensional lattice configuration; -dimensional discrepancy},
language = {eng},
number = {2},
pages = {483-527},
publisher = {Université Bordeaux I},
title = {On normal lattice configurations and simultaneously normal numbers},
url = {http://eudml.org/doc/248700},
volume = {13},
year = {2001},
}
TY - JOUR
AU - Levin, Mordechay B.
TI - On normal lattice configurations and simultaneously normal numbers
JO - Journal de théorie des nombres de Bordeaux
PY - 2001
PB - Université Bordeaux I
VL - 13
IS - 2
SP - 483
EP - 527
AB - Let $q, q_1, \dots , q_s \ge 2$ be integers, and let $\alpha _ 1, \alpha _2, \dots $ be a sequence of real numbers. In this paper we prove that the lower bound of the discrepancy of the double sequence\begin{equation*} (\left\lbrace \alpha _mq^n\right\rbrace , \dots ,\left\lbrace \alpha _{m + s - 1}q^n\right\rbrace )^{MN}_{m,n=1} \end{equation*}coincides (up to a logarithmic factor) with the lower bound of the discrepancy of ordinary sequences $(xn)^{MN}_{n=1}$ in $s$-dimensional unit cube $(s,M,N = 1, 2,\dots )$. We also find a lower bound of the discrepancy (up to a logarithmic factor) of the sequence $(\left\lbrace \alpha _1 q^n_1\right\rbrace , \dots , \left\lbrace \alpha _s q^n_s\right\rbrace )^N_{n=1}$ (Korobov’s problem).
LA - eng
KW - normal numbers; two-dimensional lattice configuration; -dimensional discrepancy
UR - http://eudml.org/doc/248700
ER -
References
top- [C] D.J. Champernowne, The construction of decimal normal in the scale ten. J. London Math. Soc.8 (1935), 254-260. Zbl0007.33701JFM59.0214.01
- [Ci] J. Cigler, Asymptotische Verteilung reeller Zahlen mod 1. Monatsh. Math.64 (1960), 201-225. Zbl0111.25301MR121358
- [DrTi] M. Drmota, R.F. Tichy, Sequences, Discrepancies and Applications. Lecture Notes in Mathematics1651, Springer-Verlag, Berlin, 1997. Zbl0877.11043MR1470456
- [Ei] J. Eichenauer-Herrmann, A unified approach to the analysis of compound pseudorandom numbers. Finite Fields Appl.1 (1995), 102-114. Zbl0822.11053MR1334628
- [KT] P. Kirschenhofer, R.F. Tichy, On uniform distribution of double sequences, Manuscripta Math.35 (1981), 195-207. Zbl0478.10036MR627933
- [Ko1] N.M. Korobov, Numbers with bounded quotient and their applications to questions of Diophantine approximation. Izv. Akad. Nauk SSSR Ser. Mat.19 (1955), 361-380. Zbl0065.03202MR74464
- [Ko2] N.M. Korobov, Distribution of fractional parts of exponential function. Vestnic Moskov. Univ. Ser. 1 Mat. Meh.21 (1966), no. 4, 42-46. Zbl0154.04801MR197435
- [Ko3] N.M. Korobov, Exponential sums and their applications, Kluwer Academic Publishers, Dordrecht, 1992. Zbl0754.11022MR1162539
- [KN] L. Kuipers, H. Niedrreiter, Uniform distribution of sequences. John Wiley, New York, 1974. Zbl0281.10001MR419394
- [Le1] M.B. Levin, On the uniform distribution of the sequence {αλx}. Math. USSR Sbornik27 (1975), 183-197. Zbl0357.10020
- [Le2] M.B. Levin, The distribution of fractional parts of the exponential function. Soviet. Math. (Iz. Vuz.)21 (1977), no. 11, 41-47. Zbl0389.10037MR506058
- [Le3] M.B. Levin, On the discrepancy estimate of normal numbers. Acta Arith.88 (1999), 99-111. Zbl0947.11023MR1700240
- [LS1] M.B. Levin, M. Smorodinsky, Explicit construction of normal lattice configuration, preprint. MR2150267
- [LS2] M.B. Levin, M. Smorodinsky, A Zd generalization of Davenport and Erdös theorem on normal numbers. Colloq. Math.84/85 (2000), 431-441. Zbl1014.11046MR1784206
- [Ni] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia, 1992. Zbl0761.65002MR1172997
- [Ro] K. Roth, On irregularities of distributions. Mathematika1 (1954), 73-79. Zbl0057.28604MR66435
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.