The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Treść Tomu XXVI”

Materiały redakcyjne

(1919)

Prace Matematyczno-Fizyczne

Similarity:

Strona Tytułowa Józef Puzyna (1856-1919) Treść tomu XXX-go - Table des matières du tome XXX str I-II Spis rzeczy zawartych w tomach XXI-XXX "Prac matematyczno-fizycznych" - Tables de matières, contenues dans le Volumes XXI-XXX str. 243-253 Spis Alfabetyczny str. 254-257

Treść

(1925-1926)

Prace Matematyczno-Fizyczne

Similarity:

Sur les fonctions approximativement discontinues

Stefan Kempisty (1924)

Fundamenta Mathematicae

Similarity:

Le but de cette note est de démontrer: Théorème: Pour toute fonction f(x) d'une variable réelle l'ensemble E[L^+(x)<l^-(x)] est au plus denombrable.

Démonstration d'un théorème sur les fonctions additives d'ensemble

Wacław Sierpiński (1924)

Fundamenta Mathematicae

Similarity:

Le but de cette note est de démontrer: Théorème: Soit une fonction d'ensembles F, additive et définie sur la famille additive d'ensembles T. Tout ensemble E_0 de la famille T se divise en deux ensembles P et N, tels que P ∈ T, N ∈ T et 1. f(E) ≥ 0 pour E ⊂ P, E ∈ T, 2. f(E) ≤ 0 pour E ⊂ N, E ∈ T.