Displaying similar documents to “Nondiscrete induction and an inversion-free modification of Newton's method”

Extending the applicability of Newton's method using nondiscrete induction

Ioannis K. Argyros, Saïd Hilout (2013)

Czechoslovak Mathematical Journal

Similarity:

We extend the applicability of Newton's method for approximating a solution of a nonlinear operator equation in a Banach space setting using nondiscrete mathematical induction concept introduced by Potra and Pták. We obtain new sufficient convergence conditions for Newton's method using Lipschitz and center-Lipschitz conditions instead of only the Lipschitz condition used in F. A. Potra, V. Pták, Sharp error bounds for Newton's process, Numer. Math., 34 (1980), 63–72, and F. A. Potra,...

On the gap between the semilocal convergence domains of two Newton methods

Ioannis K. Argyros (2007)

Applicationes Mathematicae

Similarity:

We answer a question posed by Cianciaruso and De Pascale: What is the exact size of the gap between the semilocal convergence domains of the Newton and the modified Newton method? In particular, is it possible to close it? Our answer is yes in some cases. Using some ideas of ours and more precise error estimates we provide a semilocal convergence analysis for both methods with the following advantages over earlier approaches: weaker hypotheses; finer error bounds on the distances involved,...

A weaker affine covariant Newton-Mysovskikh theorem for solving equations

Ioannis K. Argyros (2006)

Applicationes Mathematicae

Similarity:

The Newton-Mysovskikh theorem provides sufficient conditions for the semilocal convergence of Newton's method to a locally unique solution of an equation in a Banach space setting. It turns out that under weaker hypotheses and a more precise error analysis than before, weaker sufficient conditions can be obtained for the local as well as semilocal convergence of Newton's method. Error bounds on the distances involved as well as a larger radius of convergence are obtained. Some numerical...

New unifying convergence criteria for Newton-like methods

Ioannis K. Argyros (2002)

Applicationes Mathematicae

Similarity:

We present a local and a semilocal analysis for Newton-like methods in a Banach space. Our hypotheses on the operators involved are very general. It turns out that by choosing special cases for the "majorizing" functions we obtain all previous results in the literature, but not vice versa. Since our results give a deeper insight into the structure of the functions involved, we can obtain semilocal convergence under weaker conditions and in the case of local convergence a larger convergence...