The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “The local versions of H p ( n ) spaces at the origin”

Two-parameter Hardy-Littlewood inequality and its variants

Chang-Pao Chen, Dah-Chin Luor (2000)

Studia Mathematica

Similarity:

Let s* denote the maximal function associated with the rectangular partial sums s m n ( x , y ) of a given double function series with coefficients c j k . The following generalized Hardy-Littlewood inequality is investigated: | | s * | | p , μ C p , α , β Σ j = 0 Σ k = 0 ( j ̅ ) p - α - 2 ( k ̅ ) p - β - 2 | c j k | p 1 / p , where ξ̅=max(ξ,1), 0 < p < ∞, and μ is a suitable positive Borel measure. We give sufficient conditions on c j k and μ under which the above Hardy-Littlewood inequality holds. Several variants of this inequality are also examined. As a consequence, the ||·||p,μ-convergence property...

On the characterization of Hardy-Besov spaces on the dyadic group and its applications

Jun Tateoka (1994)

Studia Mathematica

Similarity:

C. Watari [12] obtained a simple characterization of Lipschitz classes L i p ( p ) α ( W ) ( 1 p , α > 0 ) on the dyadic group using the L p -modulus of continuity and the best approximation by Walsh polynomials. Onneweer and Weiyi [4] characterized homogeneous Besov spaces B p , q α on locally compact Vilenkin groups, but there are still some gaps to be filled up. Our purpose is to give the characterization of Besov spaces B p , q α by oscillations, atoms and others on the dyadic groups. As applications, we show a strong capacity inequality...

Nonconvolution transforms with oscillating kernels that map 1 0 , 1 into itself

G. Sampson (1993)

Studia Mathematica

Similarity:

We consider operators of the form ( Ω f ) ( y ) = ʃ - Ω ( y , u ) f ( u ) d u with Ω(y,u) = K(y,u)h(y-u), where K is a Calderón-Zygmund kernel and h L (see (0.1) and (0.2)). We give necessary and sufficient conditions for such operators to map the Besov space 1 0 , 1 (= B) into itself. In particular, all operators with h ( y ) = e i | y | a , a > 0, a ≠ 1, map B into itself.

On (C,1) summability of integrable functions with respect to the Walsh-Kaczmarz system

G. Gát (1998)

Studia Mathematica

Similarity:

Let G be the Walsh group. For f L 1 ( G ) we prove the a. e. convergence σf → f(n → ∞), where σ n is the nth (C,1) mean of f with respect to the Walsh-Kaczmarz system. Define the maximal operator σ * f s u p n | σ n f | . We prove that σ* is of type (p,p) for all 1 < p ≤ ∞ and of weak type (1,1). Moreover, σ * f 1 c | f | H , where H is the Hardy space on the Walsh group.

( H p , L p ) -type inequalities for the two-dimensional dyadic derivative

Ferenc Weisz (1996)

Studia Mathematica

Similarity:

It is shown that the restricted maximal operator of the two-dimensional dyadic derivative of the dyadic integral is bounded from the two-dimensional dyadic Hardy-Lorentz space H p , q to L p , q (2/3 < p < ∞, 0 < q ≤ ∞) and is of weak type ( L 1 , L 1 ) . As a consequence we show that the dyadic integral of a ∞ function f L 1 is dyadically differentiable and its derivative is f a.e.

On some singular integral operatorsclose to the Hilbert transform

T. Godoy, L. Saal, M. Urciuolo (1997)

Colloquium Mathematicae

Similarity:

Let m: ℝ → ℝ be a function of bounded variation. We prove the L p ( ) -boundedness, 1 < p < ∞, of the one-dimensional integral operator defined by T m f ( x ) = p . v . k ( x - y ) m ( x + y ) f ( y ) d y where k ( x ) = j 2 j φ j ( 2 j x ) for a family of functions φ j j satisfying conditions (1.1)-(1.3) given below.