An equivalent measure for some nonsingular transformations and application
I. Assam, J. Woś (1990)
Studia Mathematica
Similarity:
I. Assam, J. Woś (1990)
Studia Mathematica
Similarity:
Zbigniew Kowalski (1994)
Applicationes Mathematicae
Similarity:
We consider the skew product transformation T(x,y)= (f(x), ) where f is an endomorphism of a Lebesgue space (X,A,p), e : X → S and is a family of Lasota-Yorke type maps of the unit interval into itself. We obtain conditions under which the ergodic properties of f imply the same properties for T. Consequently, we get the asymptotical stability of random perturbations of a single Lasota-Yorke type map. We apply this to some probabilistic model of the motion of cogged bits in the rotary...
Zbigniew Kowalski (1993)
Studia Mathematica
Similarity:
We consider skew products preserving a measure which is absolutely continuous with respect to the product measure. Here f is a 1-sided Markov shift with a finite set of states or a Lasota-Yorke type transformation and , i = 1,..., max e, are nonsingular transformations of some probability space. We obtain the description of the set of eigenfunctions of the Frobenius-Perron operator for T and consequently we get the conditions ensuring the ergodicity, weak mixing and exactness of T....
J. Choksi, M. Nadkarni (2000)
Colloquium Mathematicae
Similarity:
It is shown that in the group of invertible measurable nonsingular transformations on a Lebesgue probability space, endowed with the coarse topology, the transformations with infinite ergodic index are generic; they actually form a dense set. (A transformation has infinite ergodic index if all its finite Cartesian powers are ergodic.) This answers a question asked by C. Silva. A similar result was proved by U. Sachdeva in 1971, for the group of transformations preserving an infinite...
Jon Aaronson, Tom Meyerovitch (2008)
Colloquium Mathematicae
Similarity:
We show that a dissipative, ergodic measure preserving transformation of a σ-finite, non-atomic measure space always has many non-proportional, absolutely continuous, invariant measures and is ergodic with respect to each one of these.
Dalibor Volný (1989)
Aplikace matematiky
Similarity:
The author investigates non ergodic versions of several well known limit theorems for strictly stationary processes. In some cases, the assumptions which are given with respect to general invariant measure, guarantee the validity of the theorem with respect to ergodic components of the measure. In other cases, the limit theorem can fail for all ergodic components, while for the original invariant measure it holds.
F. Martín-Reyes, A. de la Torre (1994)
Studia Mathematica
Similarity:
Paweł J. Mitkowski, Wojciech Mitkowski (2012)
International Journal of Applied Mathematics and Computer Science
Similarity:
We discuss basic notions of the ergodic theory approach to chaos. Based on simple examples we show some characteristic features of ergodic and mixing behaviour. Then we investigate an infinite dimensional model (delay differential equation) of erythropoiesis (red blood cell production process) formulated by Lasota. We show its computational analysis on the previously presented theory and examples. Our calculations suggest that the infinite dimensional model considered possesses an attractor...
Ryotaro Sato (1994)
Publicacions Matemàtiques
Similarity:
Let Ti (i = 1, 2, ..., d) be commuting null preserving transformations on a finite measure space (X, F, μ) and let 1 ≤ p < ∞. In this paper we prove that for every f ∈ Lp(μ) the averages Anf(x) = (n + 1)-d Σ0≤ni≤n f(T1 n1 T2 n2...
Ryotaro Sato (1995)
Studia Mathematica
Similarity:
Let (X,ℱ,µ) be a finite measure space and τ a null preserving transformation on (X,ℱ,µ). Functions in Lorentz spaces L(p,q) associated with the measure μ are considered for pointwise ergodic theorems. Necessary and sufficient conditions are given in order that for any f in L(p,q) the ergodic average converges almost everywhere to a function f* in , where (pq) and are assumed to be in the set . Results due to C. Ryll-Nardzewski, S. Gładysz, and I. Assani and J. Woś are generalized...