Displaying similar documents to “An alternative Dunford-Pettis Property”

On the class of b-L-weakly and order M-weakly compact operators

Driss Lhaimer, Mohammed Moussa, Khalid Bouras (2020)

Mathematica Bohemica

Similarity:

In this paper, we introduce and study new concepts of b-L-weakly and order M-weakly compact operators. As consequences, we obtain some characterizations of KB-spaces.

The alternative Dunford-Pettis Property in the predual of a von Neumann algebra

Miguel Martín, Antonio M. Peralta (2001)

Studia Mathematica

Similarity:

Let A be a type II von Neumann algebra with predual A⁎. We prove that A⁎ does not have the alternative Dunford-Pettis property introduced by W. Freedman [7], i.e., there is a sequence (φₙ) converging weakly to φ in A⁎ with ||φₙ|| = ||φ|| = 1 for all n ∈ ℕ and a weakly null sequence (xₙ) in A such that φₙ(xₙ) ↛ 0. This answers a question posed in [7].

M-weak and L-weak compactness of b-weakly compact operators

J. H'Michane, A. El Kaddouri, K. Bouras, M. Moussa (2013)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We characterize Banach lattices under which each b-weakly compact (resp. b-AM-compact, strong type (B)) operator is L-weakly compact (resp. M-weakly compact).

On the equality between some classes of operators on Banach lattices

Belmesnaoui Aqzzouz, Aziz Elbour, Mohammed Moussa (2012)

Mathematica Bohemica

Similarity:

We establish some sufficient conditions under which the subspaces of Dunford-Pettis operators, of M-weakly compact operators, of L-weakly compact operators, of weakly compact operators, of semi-compact operators and of compact operators coincide and we give some consequences.