M-weak and L-weak compactness of b-weakly compact operators
J. H'Michane; A. El Kaddouri; K. Bouras; M. Moussa
Commentationes Mathematicae Universitatis Carolinae (2013)
- Volume: 54, Issue: 3, page 367-375
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topH'Michane, J., et al. "M-weak and L-weak compactness of b-weakly compact operators." Commentationes Mathematicae Universitatis Carolinae 54.3 (2013): 367-375. <http://eudml.org/doc/260619>.
@article{HMichane2013,
abstract = {We characterize Banach lattices under which each b-weakly compact (resp. b-AM-compact, strong type (B)) operator is L-weakly compact (resp. M-weakly compact).},
author = {H'Michane, J., El Kaddouri, A., Bouras, K., Moussa, M.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {b-weakly compact operator; b-AM-compact operator; strong type (B) operator; order continuous norm; positive Schur property; -weakly compact operator; -AM-compact operator; strong type (B) operator; order continuous norm; positive Schur property},
language = {eng},
number = {3},
pages = {367-375},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {M-weak and L-weak compactness of b-weakly compact operators},
url = {http://eudml.org/doc/260619},
volume = {54},
year = {2013},
}
TY - JOUR
AU - H'Michane, J.
AU - El Kaddouri, A.
AU - Bouras, K.
AU - Moussa, M.
TI - M-weak and L-weak compactness of b-weakly compact operators
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2013
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 54
IS - 3
SP - 367
EP - 375
AB - We characterize Banach lattices under which each b-weakly compact (resp. b-AM-compact, strong type (B)) operator is L-weakly compact (resp. M-weakly compact).
LA - eng
KW - b-weakly compact operator; b-AM-compact operator; strong type (B) operator; order continuous norm; positive Schur property; -weakly compact operator; -AM-compact operator; strong type (B) operator; order continuous norm; positive Schur property
UR - http://eudml.org/doc/260619
ER -
References
top- Aliprantis C.D., Burkinshaw O., Positive Operators, reprint of the 1985 original, Springer, Dordrecht, 2006. Zbl1098.47001MR2262133
- Altin B., Some properties of b-weakly compact operators, Gazi University Journal of Science 18 (3) (2005), 391–395.
- Altin B., On b-weakly compact operators on Banach lattices, Taiwanese J. Math. 11 (2007), 143–150. Zbl1139.47018MR2304011
- Alpay S., Altin B., Tonyali C., 10.1023/A:1025840528211, Positivity 7 (2003), no. 1–2, 135–139. Zbl1036.46018MR2028377DOI10.1023/A:1025840528211
- Alpay S., Altin B., Tonyali C., 10.1007/s10587-006-0054-0, Czechoslovak Math. J. 56 (131) (2006), no. 2, 765–772. Zbl1164.46310MR2291773DOI10.1007/s10587-006-0054-0
- Alpay S., Altin B., 10.1007/s11117-007-2110-x, Positivity 11 (2007), no. 4, 575–582. Zbl1137.47028MR2346443DOI10.1007/s11117-007-2110-x
- Alpay S., Ercan Z., 10.1007/s11117-008-2227-6, Positivity 13 (2009), no. 1, 21–30. Zbl1167.46001MR2466226DOI10.1007/s11117-008-2227-6
- Alpay S., Altin B., On operators of strong type B, preprint.
- Aqzzouz B., Elbour A., Hmichane J., 10.1016/j.jmaa.2008.12.063, J. Math. Anal. Appl. 354 (2009), 295–300. Zbl1167.47033MR2510440DOI10.1016/j.jmaa.2008.12.063
- Aqzzouz B., Hmichane J., The class of b-AM-compact operators, Quaestions Mathematicae(to appear).
- Aqzzouz B., Elbour A., 10.1007/s11117-009-0006-7, Positivity 14 (2010), no. 1, 75–81. Zbl1198.47034MR2596465DOI10.1007/s11117-009-0006-7
- Aqzzouz B., Elbour A., Hmichane J., On some properties of the class of semi-compact operators, Bull. Belg. Math. Soc. Simon Stevin 18 (2011), no. 4, 761–767. Zbl1250.47020MR2918181
- Aqzzouz B., Hmichane J., 10.1007/s11785-011-0138-1, Complex Anal. Oper. Theory 7 (2013), no. 1, 3–8, DOI 10.1007/s 11785-011-0138-1. MR3010785DOI10.1007/s11785-011-0138-1
- Aqzzouz B., Elbour A., The b-weakly compactness of semi-compact operators, Acta Sci. Math. (Szeged) 76 (2010), 501–510. Zbl1235.47018MR2789684
- Aqzzouz B., Elbour A., Moussa M., Hmichane J., Some characterizations of b-weakly compact operators, Math. Rep. (Bucur.) 12 (62) (2010), no. 4, 315–324. Zbl1235.47019MR2777361
- Aqzzouz B., Hmichane J., Aboutafail O., Compactness of b-weakly compact operators, Acta Sci. Math. (Szeged) 78 (2012), 163–171. Zbl1261.47059
- Chen Z.L., Wickstead A.W., 10.1016/S0019-3577(99)80025-1, Indag. Math. (N.S.) 10 (1999), no. 3, 321–336. Zbl1028.47028MR1819891DOI10.1016/S0019-3577(99)80025-1
- Cheng Na, Chen Zi-li, b-AM-compact operators on Banach lattices, Chin. J. Eng. Math. 27 (2010), no. 4, ID: 1005–3085. Zbl1235.47020MR2777452
- Ghoussoub N., Johnson W.B., 10.1090/S0002-9939-1984-0754710-8, Proc. Amer. Math. Soc. 92 (1984), no. 2, 233–238. Zbl0615.46022MR0754710DOI10.1090/S0002-9939-1984-0754710-8
- Niculescu C., 10.1007/BFb0061571, Lecture Notes in Mathematics, 991, Springer, Berlin, 1983. Zbl0515.47016MR0714186DOI10.1007/BFb0061571
- Zaanen A.C., Introduction to Operator Theory in Riesz Spaces, Springer, Berlin, 1997. Zbl0878.47022MR1631533
- Meyer-Nieberg P., Banach Lattices, Universitext, Springer, Berlin, 1991. Zbl0743.46015MR1128093
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.