M-weak and L-weak compactness of b-weakly compact operators

J. H'Michane; A. El Kaddouri; K. Bouras; M. Moussa

Commentationes Mathematicae Universitatis Carolinae (2013)

  • Volume: 54, Issue: 3, page 367-375
  • ISSN: 0010-2628

Abstract

top
We characterize Banach lattices under which each b-weakly compact (resp. b-AM-compact, strong type (B)) operator is L-weakly compact (resp. M-weakly compact).

How to cite

top

H'Michane, J., et al. "M-weak and L-weak compactness of b-weakly compact operators." Commentationes Mathematicae Universitatis Carolinae 54.3 (2013): 367-375. <http://eudml.org/doc/260619>.

@article{HMichane2013,
abstract = {We characterize Banach lattices under which each b-weakly compact (resp. b-AM-compact, strong type (B)) operator is L-weakly compact (resp. M-weakly compact).},
author = {H'Michane, J., El Kaddouri, A., Bouras, K., Moussa, M.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {b-weakly compact operator; b-AM-compact operator; strong type (B) operator; order continuous norm; positive Schur property; -weakly compact operator; -AM-compact operator; strong type (B) operator; order continuous norm; positive Schur property},
language = {eng},
number = {3},
pages = {367-375},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {M-weak and L-weak compactness of b-weakly compact operators},
url = {http://eudml.org/doc/260619},
volume = {54},
year = {2013},
}

TY - JOUR
AU - H'Michane, J.
AU - El Kaddouri, A.
AU - Bouras, K.
AU - Moussa, M.
TI - M-weak and L-weak compactness of b-weakly compact operators
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2013
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 54
IS - 3
SP - 367
EP - 375
AB - We characterize Banach lattices under which each b-weakly compact (resp. b-AM-compact, strong type (B)) operator is L-weakly compact (resp. M-weakly compact).
LA - eng
KW - b-weakly compact operator; b-AM-compact operator; strong type (B) operator; order continuous norm; positive Schur property; -weakly compact operator; -AM-compact operator; strong type (B) operator; order continuous norm; positive Schur property
UR - http://eudml.org/doc/260619
ER -

References

top
  1. Aliprantis C.D., Burkinshaw O., Positive Operators, reprint of the 1985 original, Springer, Dordrecht, 2006. Zbl1098.47001MR2262133
  2. Altin B., Some properties of b-weakly compact operators, Gazi University Journal of Science 18 (3) (2005), 391–395. 
  3. Altin B., On b-weakly compact operators on Banach lattices, Taiwanese J. Math. 11 (2007), 143–150. Zbl1139.47018MR2304011
  4. Alpay S., Altin B., Tonyali C., 10.1023/A:1025840528211, Positivity 7 (2003), no. 1–2, 135–139. Zbl1036.46018MR2028377DOI10.1023/A:1025840528211
  5. Alpay S., Altin B., Tonyali C., 10.1007/s10587-006-0054-0, Czechoslovak Math. J. 56 (131) (2006), no. 2, 765–772. Zbl1164.46310MR2291773DOI10.1007/s10587-006-0054-0
  6. Alpay S., Altin B., 10.1007/s11117-007-2110-x, Positivity 11 (2007), no. 4, 575–582. Zbl1137.47028MR2346443DOI10.1007/s11117-007-2110-x
  7. Alpay S., Ercan Z., 10.1007/s11117-008-2227-6, Positivity 13 (2009), no. 1, 21–30. Zbl1167.46001MR2466226DOI10.1007/s11117-008-2227-6
  8. Alpay S., Altin B., On operators of strong type B, preprint. 
  9. Aqzzouz B., Elbour A., Hmichane J., 10.1016/j.jmaa.2008.12.063, J. Math. Anal. Appl. 354 (2009), 295–300. Zbl1167.47033MR2510440DOI10.1016/j.jmaa.2008.12.063
  10. Aqzzouz B., Hmichane J., The class of b-AM-compact operators, Quaestions Mathematicae(to appear). 
  11. Aqzzouz B., Elbour A., 10.1007/s11117-009-0006-7, Positivity 14 (2010), no. 1, 75–81. Zbl1198.47034MR2596465DOI10.1007/s11117-009-0006-7
  12. Aqzzouz B., Elbour A., Hmichane J., On some properties of the class of semi-compact operators, Bull. Belg. Math. Soc. Simon Stevin 18 (2011), no. 4, 761–767. Zbl1250.47020MR2918181
  13. Aqzzouz B., Hmichane J., 10.1007/s11785-011-0138-1, Complex Anal. Oper. Theory 7 (2013), no. 1, 3–8, DOI 10.1007/s 11785-011-0138-1. MR3010785DOI10.1007/s11785-011-0138-1
  14. Aqzzouz B., Elbour A., The b-weakly compactness of semi-compact operators, Acta Sci. Math. (Szeged) 76 (2010), 501–510. Zbl1235.47018MR2789684
  15. Aqzzouz B., Elbour A., Moussa M., Hmichane J., Some characterizations of b-weakly compact operators, Math. Rep. (Bucur.) 12 (62) (2010), no. 4, 315–324. Zbl1235.47019MR2777361
  16. Aqzzouz B., Hmichane J., Aboutafail O., Compactness of b-weakly compact operators, Acta Sci. Math. (Szeged) 78 (2012), 163–171. Zbl1261.47059
  17. Chen Z.L., Wickstead A.W., 10.1016/S0019-3577(99)80025-1, Indag. Math. (N.S.) 10 (1999), no. 3, 321–336. Zbl1028.47028MR1819891DOI10.1016/S0019-3577(99)80025-1
  18. Cheng Na, Chen Zi-li, b-AM-compact operators on Banach lattices, Chin. J. Eng. Math. 27 (2010), no. 4, ID: 1005–3085. Zbl1235.47020MR2777452
  19. Ghoussoub N., Johnson W.B., 10.1090/S0002-9939-1984-0754710-8, Proc. Amer. Math. Soc. 92 (1984), no. 2, 233–238. Zbl0615.46022MR0754710DOI10.1090/S0002-9939-1984-0754710-8
  20. Niculescu C., 10.1007/BFb0061571, Lecture Notes in Mathematics, 991, Springer, Berlin, 1983. Zbl0515.47016MR0714186DOI10.1007/BFb0061571
  21. Zaanen A.C., Introduction to Operator Theory in Riesz Spaces, Springer, Berlin, 1997. Zbl0878.47022MR1631533
  22. Meyer-Nieberg P., Banach Lattices, Universitext, Springer, Berlin, 1991. Zbl0743.46015MR1128093

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.