The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Perfect sets of finite class without the extension property”

Nonconvolution transforms with oscillating kernels that map 1 0 , 1 into itself

G. Sampson (1993)

Studia Mathematica

Similarity:

We consider operators of the form ( Ω f ) ( y ) = ʃ - Ω ( y , u ) f ( u ) d u with Ω(y,u) = K(y,u)h(y-u), where K is a Calderón-Zygmund kernel and h L (see (0.1) and (0.2)). We give necessary and sufficient conditions for such operators to map the Besov space 1 0 , 1 (= B) into itself. In particular, all operators with h ( y ) = e i | y | a , a > 0, a ≠ 1, map B into itself.

On the theorem of Ivasev-Musatov. II

Thomas-William Korner (1978)

Annales de l'institut Fourier

Similarity:

As in Part I [Annales de l’Inst. Fourier, 27-3 (1997), 97-113], our object is to construct a measure whose support has Lebesgue measure zero, but whose Fourier transform drops away extremely fast.

A rigid space admitting compact operators

Paul Sisson (1995)

Studia Mathematica

Similarity:

A rigid space is a topological vector space whose endomorphisms are all simply scalar multiples of the identity map. The first complete rigid space was published in 1981 in [2]. Clearly a rigid space is a trivial-dual space, and admits no compact endomorphisms. In this paper a modification of the original construction results in a rigid space which is, however, the domain space of a compact operator, answering a question that was first raised soon after the existence of complete rigid...

The value-distribution of lacunary series and a conjecture of Paley

Takafumi Murai (1981)

Annales de l'institut Fourier

Similarity:

The purpose of this paper is to establish a theorem which answers a conjecture of Paley on the distribution of values of Hadamard lacunary series and which is useful to study the Peano curve property of such series.