The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On spreading c 0 -sequences in Banach spaces”

Banach spaces with a supershrinking basis

Ginés López (1999)

Studia Mathematica

Similarity:

We prove that a Banach space X with a supershrinking basis (a special type of shrinking basis) without c 0 copies is somewhat reflexive (every infinite-dimensional subspace contains an infinite-dimensional reflexive subspace). Furthermore, applying the c 0 -theorem by Rosenthal, it is proved that X contains order-one quasireflexive subspaces if X is not reflexive. Also, we obtain a characterization of the usual basis in c 0 .

Characterizations of elements of a double dual Banach space and their canonical reproductions

Vassiliki Farmaki (1993)

Studia Mathematica

Similarity:

For every element x** in the double dual of a separable Banach space X there exists the sequence ( x ( 2 n ) ) of the canonical reproductions of x** in the even-order duals of X. In this paper we prove that every such sequence defines a spreading model for X. Using this result we characterize the elements of X**╲ X which belong to the class B 1 ( X ) B 1 / 2 ( X ) (resp. to the class B 1 / 4 ( X ) ) as the elements with the sequence ( x ( 2 n ) ) equivalent to the usual basis of 1 (resp. as the elements with the sequence ( x ( 4 n - 2 ) - x ( 4 n ) ) equivalent to the...