Characterizations of elements of a double dual Banach space and their canonical reproductions
Studia Mathematica (1993)
- Volume: 104, Issue: 1, page 61-74
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] B. Beauzamy et J. T. Lapreste, Modèles étalés des espaces de Banach, Travaux en Cours, Hermann, Paris 1984. Zbl0553.46012
- [2] C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151-164.
- [3] A. Brunel and L. Sucheston, On J-convexity and ergodic superproperties of Banach spaces, Trans. Amer. Math. Soc. 204 (1975), 79-90. Zbl0273.46013
- [4] V. Farmaki, -subspaces and fourth dual types, Proc. Amer. Math. Soc. (2) 102 (1988), 321-328. Zbl0643.46016
- [5] R. Haydon, E. Odell and H. Rosenthal, On certain classes of Baire-1 functions with applications to Banach space theory, in: Functional Analysis (Austin, Tex., 1987/1989), Lecture Notes in Math. 1470, Springer, 1991, 1-35. Zbl0762.46006
- [6] B. Maurey, Types and -subspaces, in: Texas Functional Analysis Seminar 1982-1983, Longhorn Notes, Univ. Texas Press, Austin, Tex., 1983, 123-137.
- [7] F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. (2) 30 (1929), 264-286. Zbl55.0032.04
- [8] H. Rosenthal, Some remarks concerning unconditional basic sequences, in: Texas Functional Analysis Seminar 1982-1983, Longhorn Notes, Univ. Texas Press, Austin, Tex., 1983, 15-47.
- [9] H. Rosenthal, Double dual types and the Maurey characterization of Banach spaces containing , in: Texas Functional Analysis Seminar 1983-1984, Longhorn Notes, Univ. Texas Press, Austin, Tex., 1984, 1-37.