Displaying similar documents to “Partial retractions for weighted Hardy spaces”

Weighted Hardy inequalities and Hardy transforms of weights

Joan Cerdà, Joaquim Martín (2000)

Studia Mathematica

Similarity:

Many problems in analysis are described as weighted norm inequalities that have given rise to different classes of weights, such as A p -weights of Muckenhoupt and B p -weights of Ariño and Muckenhoupt. Our purpose is to show that different classes of weights are related by means of composition with classical transforms. A typical example is the family M p of weights w for which the Hardy transform is L p ( w ) -bounded. A B p -weight is precisely one for which its Hardy transform is in M p , and also a weight...

Multilinear Calderón-Zygmund operators on weighted Hardy spaces

Wenjuan Li, Qingying Xue, Kôzô Yabuta (2010)

Studia Mathematica

Similarity:

Grafakos-Kalton [Collect. Math. 52 (2001)] discussed the boundedness of multilinear Calderón-Zygmund operators on the product of Hardy spaces. Then Lerner et al. [Adv. Math. 220 (2009)] defined A p weights and built a theory of weights adapted to multilinear Calderón-Zygmund operators. In this paper, we combine the above results and obtain some estimates for multilinear Calderón-Zygmund operators on weighted Hardy spaces and also obtain a weighted multilinear version of an inequality for...

The factorization of the weighted Hardy space in terms of multilinear Calderón-Zygmund operators

Suixin He, Shuangping Tao (2023)

Czechoslovak Mathematical Journal

Similarity:

We give a constructive proof of the factorization theorem for the weighted Hardy space in terms of multilinear Calderón-Zygmund operators. The result is also new even in the linear setting. As an application, we obtain the characterization of weighted BMO space via the weighted boundedness of commutators of the multilinear Calderón-Zygmund operators.

Mapping properties of integral averaging operators

H. Heinig, G. Sinnamon (1998)

Studia Mathematica

Similarity:

Characterizations are obtained for those pairs of weight functions u and v for which the operators T f ( x ) = ʃ a ( x ) b ( x ) f ( t ) d t with a and b certain non-negative functions are bounded from L u p ( 0 , ) to L v q ( 0 , ) , 0 < p,q < ∞, p≥ 1. Sufficient conditions are given for T to be bounded on the cones of monotone functions. The results are applied to give a weighted inequality comparing differences and derivatives as well as a weight characterization for the Steklov operator.