The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Two-parameter Hardy-Littlewood inequality and its variants”

On the characterization of Hardy-Besov spaces on the dyadic group and its applications

Jun Tateoka (1994)

Studia Mathematica

Similarity:

C. Watari [12] obtained a simple characterization of Lipschitz classes L i p ( p ) α ( W ) ( 1 p , α > 0 ) on the dyadic group using the L p -modulus of continuity and the best approximation by Walsh polynomials. Onneweer and Weiyi [4] characterized homogeneous Besov spaces B p , q α on locally compact Vilenkin groups, but there are still some gaps to be filled up. Our purpose is to give the characterization of Besov spaces B p , q α by oscillations, atoms and others on the dyadic groups. As applications, we show a strong capacity inequality...

On (C,1) summability of integrable functions with respect to the Walsh-Kaczmarz system

G. Gát (1998)

Studia Mathematica

Similarity:

Let G be the Walsh group. For f L 1 ( G ) we prove the a. e. convergence σf → f(n → ∞), where σ n is the nth (C,1) mean of f with respect to the Walsh-Kaczmarz system. Define the maximal operator σ * f s u p n | σ n f | . We prove that σ* is of type (p,p) for all 1 < p ≤ ∞ and of weak type (1,1). Moreover, σ * f 1 c | f | H , where H is the Hardy space on the Walsh group.

Nonconvolution transforms with oscillating kernels that map 1 0 , 1 into itself

G. Sampson (1993)

Studia Mathematica

Similarity:

We consider operators of the form ( Ω f ) ( y ) = ʃ - Ω ( y , u ) f ( u ) d u with Ω(y,u) = K(y,u)h(y-u), where K is a Calderón-Zygmund kernel and h L (see (0.1) and (0.2)). We give necessary and sufficient conditions for such operators to map the Besov space 1 0 , 1 (= B) into itself. In particular, all operators with h ( y ) = e i | y | a , a > 0, a ≠ 1, map B into itself.

The value-distribution of lacunary series and a conjecture of Paley

Takafumi Murai (1981)

Annales de l'institut Fourier

Similarity:

The purpose of this paper is to establish a theorem which answers a conjecture of Paley on the distribution of values of Hadamard lacunary series and which is useful to study the Peano curve property of such series.