The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Stable inverse-limit sequences and automatic continuity”

Stable elements of Banach and Fréchet algebras

Graham Allan (1998)

Studia Mathematica

Similarity:

We introduce an algebraic notion-stability-for an element of a commutative ring. It is shown that the stable elements of Banach algebras, and of Fréchet algebras, may be simply described. Part of the theory of power-series embeddings, given in [1] and [4], is seen to be of a purely algebraic nature. This approach leads to other natural questions.

Stable inverse-limit sequences, with application to Predict algebras

Graham Allan (1996)

Studia Mathematica

Similarity:

The notion of a stable inverse-limit sequence is introduced. It provides a sufficient (and, for sequences of abelian groups, necessary) condition for the preservation of exactness by the inverse-limit functor. Examples of stable sequences are provided through the abstract Mittag-Leffler theorem; the results are applied in the theory of Fréchet algebras.

Prolongations and stability in dynamical systems

J. Auslander, P. Seibert (1964)

Annales de l'institut Fourier

Similarity:

Les auteurs étudient la notion de prolongement au sens de T. Ura et ses relations avec la notion d’ensembles positivement invariants. La stabilité au sens de Liapounoff est équivalente à l’invariance par prolongement. Les auteurs dégagent ensuite la notion de “prolongements abstraits” et les notions de stabilité correspondantes; la stabilité absolue (associée au prolongement minimal transitif) et la stabilité asymptotique jouent un rôle important.