# Stable inverse-limit sequences, with application to Predict algebras

Studia Mathematica (1996)

- Volume: 121, Issue: 3, page 277-308
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topAllan, Graham. "Stable inverse-limit sequences, with application to Predict algebras." Studia Mathematica 121.3 (1996): 277-308. <http://eudml.org/doc/216356>.

@article{Allan1996,

abstract = {The notion of a stable inverse-limit sequence is introduced. It provides a sufficient (and, for sequences of abelian groups, necessary) condition for the preservation of exactness by the inverse-limit functor. Examples of stable sequences are provided through the abstract Mittag-Leffler theorem; the results are applied in the theory of Fréchet algebras.},

author = {Allan, Graham},

journal = {Studia Mathematica},

keywords = {stable inverse-limit sequence; preservation of exactness by the inverse-limit functor; abstract Mittag-Leffler theorem; theory of Fréchet algebras},

language = {eng},

number = {3},

pages = {277-308},

title = {Stable inverse-limit sequences, with application to Predict algebras},

url = {http://eudml.org/doc/216356},

volume = {121},

year = {1996},

}

TY - JOUR

AU - Allan, Graham

TI - Stable inverse-limit sequences, with application to Predict algebras

JO - Studia Mathematica

PY - 1996

VL - 121

IS - 3

SP - 277

EP - 308

AB - The notion of a stable inverse-limit sequence is introduced. It provides a sufficient (and, for sequences of abelian groups, necessary) condition for the preservation of exactness by the inverse-limit functor. Examples of stable sequences are provided through the abstract Mittag-Leffler theorem; the results are applied in the theory of Fréchet algebras.

LA - eng

KW - stable inverse-limit sequence; preservation of exactness by the inverse-limit functor; abstract Mittag-Leffler theorem; theory of Fréchet algebras

UR - http://eudml.org/doc/216356

ER -

## References

top- [1] G. R. Allan, Embedding the algebra of formal power series in a Banach algebra, Proc. London Math. Soc. (3) 25 (1972), 329-340. Zbl0243.46059
- [2] G. R. Allan, Fréchet algebras and formal power series, Studia Math. 119 (1996), 271-288. Zbl0858.46041
- [3] R. F. Arens, A generalization of normed rings, Pacific J. Math. 2 (1952), 455-471. Zbl0047.35802
- [4] R. F. Arens, Dense inverse limit rings, Michigan Math. J. 5 (1958), 169-182. Zbl0087.31802
- [5] N. Bourbaki, Théorie des ensembles, Hermann, Paris, 1970. Zbl0215.05101
- [6] A. M. Davie, Homotopy in Fréchet algebras, Proc. London Math. Soc. (3) 23 (1971), 31-52. Zbl0218.46044
- [7] S. Eilenberg and N. E. Steenrod, Foundations of Algebraic Topology, Princeton Univ. Press, Princeton, N.J., 1952. Zbl0047.41402
- [8] R. Engelking, General Topology, revised and completed edition, Heldermann, Berlin, 1989.
- [9] J. Eschmeier and M. Putinar, Spectral Decompositions and Analytic Sheaves, London Math. Soc. Monographs (N.S.) 10, Clarendon Press, Oxford, 1996. Zbl0855.47013
- [10] J. Esterle, Mittag-Leffler methods in the theory of Banach algebras and a new approach to Michael's problem, in: Contemp. Math. 32, Amer. Math. Soc., 1984, 107-129. Zbl0569.46031
- [11] T. W. Gamelin, Uniform Algebras, Prentice-Hall, Englewood Cliffs, 1969. Zbl0213.40401
- [12] R. Godement, Topologie algébrique et théorie des faisceaux, Publ. Inst. Math. Univ. Strasbourg XIII, Hermann, Paris, 1964. Zbl0080.16201
- [13] G. Köthe, Topological Vector Spaces I, Springer, Berlin, 1969. Zbl0179.17001
- [14] W. S. Massey, Homology and Cohomology Theory, Marcel Dekker, Basel, 1978.
- [15] E. A. Michael, Locally multiplicatively convex topological algebras, Mem. Amer. Math. Soc. 11 (1953; third printing 1971).
- [16] J. Milnor, On axiomatic homology theory, Pacific J. Math. 12 (1962), 337-341. Zbl0114.39604
- [17] R. Narasimhan, Complex Analysis in One Variable, Birkhäuser, Boston, 1985. Zbl0561.30001
- [18] V. P. Palomodov, Homological methods in the theory of locally convex spaces, Uspekhi Mat. Nauk 26 (1) (1971), 3-65 (in Russian); English transl.: Russian Math. Surveys 26 (1971), 1-64.
- [19] J. L. Taylor, A joint spectrum for several commuting operators, J. Funct. Anal. 6 (1970), 172-191. Zbl0233.47024

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.