Displaying similar documents to “Weakly mixing but not mixing quasi-Markovian processes”

Ergodic properties of skew products with Lasota-Yorke type maps in the base

Zbigniew Kowalski (1993)

Studia Mathematica

Similarity:

We consider skew products T ( x , y ) = ( f ( x ) , T e ( x ) y ) preserving a measure which is absolutely continuous with respect to the product measure. Here f is a 1-sided Markov shift with a finite set of states or a Lasota-Yorke type transformation and T i , i = 1,..., max e, are nonsingular transformations of some probability space. We obtain the description of the set of eigenfunctions of the Frobenius-Perron operator for T and consequently we get the conditions ensuring the ergodicity, weak mixing and exactness of T....

Weakly mixing transformations and the Carathéodory definition of measurable sets

Amos Koeller, Rodney Nillsen, Graham Williams (2007)

Colloquium Mathematicae

Similarity:

Let 𝕋 denote the set of complex numbers of modulus 1. Let v ∈ 𝕋, v not a root of unity, and let T: 𝕋 → 𝕋 be the transformation on 𝕋 given by T(z) = vz. It is known that the problem of calculating the outer measure of a T-invariant set leads to a condition which formally has a close resemblance to Carathéodory's definition of a measurable set. In ergodic theory terms, T is not weakly mixing. Now there is an example, due to Kakutani, of a transformation ψ̃ which is weakly mixing but...

Ergodic properties of skew products withfibre maps of Lasota-Yorke type

Zbigniew Kowalski (1994)

Applicationes Mathematicae

Similarity:

We consider the skew product transformation T(x,y)= (f(x), T e ( x ) ) where f is an endomorphism of a Lebesgue space (X,A,p), e : X → S and T s s S is a family of Lasota-Yorke type maps of the unit interval into itself. We obtain conditions under which the ergodic properties of f imply the same properties for T. Consequently, we get the asymptotical stability of random perturbations of a single Lasota-Yorke type map. We apply this to some probabilistic model of the motion of cogged bits in the rotary...

Weak almost periodicity of L 1 contractions and coboundaries of non-singular transformations

Isaac Kornfeld, Michael Lin (2000)

Studia Mathematica

Similarity:

It is well known that a weakly almost periodic operator T in a Banach space is mean ergodic, and in the complex case, also λT is mean ergodic for every |λ|=1. We prove that a positive contraction on L 1 is weakly almost periodic if (and only if) it is mean ergodic. An example shows that without positivity the result is false. In order to construct a contraction T on a complex L 1 such that λT is mean ergodic whenever |λ|=1, but T is not weakly almost periodic, we prove the following: Let...

Exactness of skew products with expanding fibre maps

Thomas Bogenschütz, Zbigniew Kowalski (1996)

Studia Mathematica

Similarity:

We give an elementary proof for the uniqueness of absolutely continuous invariant measures for expanding random dynamical systems and study their mixing properties.

Spontaneous clustering in theoretical and some empirical stationary processes

T. Downarowicz, Y. Lacroix, D. Léandri (2010)

ESAIM: Probability and Statistics

Similarity:

In a stationary ergodic process, clustering is defined as the tendency of events to appear in series of increased frequency separated by longer breaks. Such behavior, contradicting the theoretical “unbiased behavior” with exponential distribution of the gaps between appearances, is commonly observed in experimental processes and often difficult to explain. In the last section we relate one such empirical example of clustering, in the area of marine technology. In the theoretical part...

Infinite ergodic index d -actions in infinite measure

E. Muehlegger, A. Raich, C. Silva, M. Touloumtzis, B. Narasimhan, W. Zhao (1999)

Colloquium Mathematicae

Similarity:

We construct infinite measure preserving and nonsingular rank one d -actions. The first example is ergodic infinite measure preserving but with nonergodic, infinite conservative index, basis transformations; in this case we exhibit sets of increasing finite and infinite measure which are properly exhaustive and weakly wandering. The next examples are staircase rank one infinite measure preserving d -actions; for these we show that the individual basis transformations have conservative...

Conjugacies between ergodic transformations and their inverses

Geoffrey Goodson (2000)

Colloquium Mathematicae

Similarity:

We study certain symmetries that arise when automorphisms S and T defined on a Lebesgue probability space (X, ℱ, μ) satisfy the equation S T = T - 1 S . In an earlier paper [6] it was shown that this puts certain constraints on the spectrum of T. Here we show that it also forces constraints on the spectrum of S 2 . In particular, S 2 has to have a multiplicity function which only takes even values on the orthogonal complement of the subspace f L 2 ( X , , μ ) : f ( T 2 x ) = f ( x ) . For S and T ergodic satisfying this equation further constraints...