# Spectral properties of skew-product diffeomorphisms of tori

Colloquium Mathematicum (1997)

- Volume: 72, Issue: 2, page 223-235
- ISSN: 0010-1354

## Access Full Article

top## How to cite

topIwanik, A.. "Spectral properties of skew-product diffeomorphisms of tori." Colloquium Mathematicum 72.2 (1997): 223-235. <http://eudml.org/doc/210461>.

@article{Iwanik1997,

author = {Iwanik, A.},

journal = {Colloquium Mathematicum},

keywords = {countable Lebesgue spectrum; Anzai skew-products; weakly mixing cocycles},

language = {eng},

number = {2},

pages = {223-235},

title = {Spectral properties of skew-product diffeomorphisms of tori},

url = {http://eudml.org/doc/210461},

volume = {72},

year = {1997},

}

TY - JOUR

AU - Iwanik, A.

TI - Spectral properties of skew-product diffeomorphisms of tori

JO - Colloquium Mathematicum

PY - 1997

VL - 72

IS - 2

SP - 223

EP - 235

LA - eng

KW - countable Lebesgue spectrum; Anzai skew-products; weakly mixing cocycles

UR - http://eudml.org/doc/210461

ER -

## References

top- [A] H. Anzai, Ergodic skew product transformations on the torus, Osaka Math. J. 3 (1951), 83-99.
- [B] L. Baggett, On functions that are trivial cocycles for a set of irrationals, Proc. Amer. Math. Soc. 104 (1988), 1212-1217.
- [C] G. H. Choe, Spectral properties of cocycles, Ph.D. Thesis, University of California, Berkeley, 1987.
- [CFS] I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory, Springer, 1982.
- [F] K. Frączek, Spectral properties of cocycles over rotations, preprint.
- [I1] A. Iwanik, Approximation by periodic transformations and diophantine approximation of the spectrum, in: Ergodic Theory of ${Z}^{d}$-Actions, Proc. Warwick Symposium 1993-4, Cambridge Univ. Press, 1996, 387-401.
- [I2] A. Iwanik, Generic smooth cocycles of degree zero over irrational rotations, Studia Math. 115 (1995), 241-250.
- [I3] A. Iwanik, Cyclic approximation of analytic cocycles over irrational rotations, Colloq. Math. 70 (1996), 73-78.
- [I4] A. Iwanik, Anzai skew products with Lebesgue component of infinite multiplicity, Bull. London Math. Soc., to appear.
- [ILR] A. Iwanik, M. Lemańczyk and D. Rudolph, Absolutely continuous cocycles over irrational rotations, Israel J. Math. 83 (1993), 73-95.
- [IS] A. Iwanik and J. Serafin, Most monothetic extensions are rank-1, Colloq. Math. 66 (1993), 63-76.
- [JP] R. Jones and W. Parry, Compact abelian group extensions of dynamical systems II, Compositio Math. 25 (1972), 135-147.
- [KS] A. B. Katok and A. M. Stepin, Approximations in ergodic theory, Uspekhi Mat. Nauk 22 (5) (1967), 81-106 (in Russian).
- [K] A. G. Kushnirenko, Spectral properties of some dynamical systems with polynomial divergence of orbits, Vestnik Moskov. Univ. 1974 (1), 101-108 (in Russian).
- [R] A. Robinson, Non-abelian extensions have nonsimple spectrum, Compositio Math. 65 (1988), 155-170.
- [Z] Q. Zhang, Rigidity of smooth cocycles over irrational rotations, preprint.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.