Displaying similar documents to “Approximation of non-bounded continuous functions by certain sequences of linear positive operators or polynomials”

Rota-Baxter operators and Bernoulli polynomials

Vsevolod Gubarev (2021)

Communications in Mathematics

Similarity:

We develop the connection between Rota-Baxter operators arisen from algebra and mathematical physics and Bernoulli polynomials. We state that a trivial property of Rota-Baxter operators implies the symmetry of the power sum polynomials and Bernoulli polynomials. We show how Rota-Baxter operators equalities rewritten in terms of Bernoulli polynomials generate identities for the latter.

On certain generalized q-Appell polynomial expansions

Thomas Ernst (2014)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

We study q-analogues of three Appell polynomials, the H-polynomials, the Apostol–Bernoulli and Apostol–Euler polynomials, whereby two new q-difference operators and the NOVA q-addition play key roles. The definitions of the new polynomials are by the generating function; like in our book, two forms, NWA and JHC are always given together with tables, symmetry relations and recurrence formulas. It is shown that the complementary argument theorems can be extended to the new polynomials...

Estimates for polynomials in the unit disk with varying constant terms

Stephan Ruscheweyh, Magdalena Wołoszkiewicz (2011)

Annales UMCS, Mathematica

Similarity:

Let || · || be the uniform norm in the unit disk. We study the quantities Mn (α) := inf (||zP(z) + α|| - α) where the infimum is taken over all polynomials P of degree n - 1 with ||P(z)|| = 1 and α > 0. In a recent paper by Fournier, Letac and Ruscheweyh (Math. Nachrichten 283 (2010), 193-199) it was shown that infα>0Mn (α) = 1/n. We find the exact values of Mn (α) and determine corresponding extremal polynomials. The method applied uses known cases of maximal ranges of polynomials. ...

On certain generalized q-Appell polynomial expansions

Thomas Ernst (2015)

Annales UMCS, Mathematica

Similarity:

We study q-analogues of three Appell polynomials, the H-polynomials, the Apostol-Bernoulli and Apostol-Euler polynomials, whereby two new q-difference operators and the NOVA q-addition play key roles. The definitions of the new polynomials are by the generating function; like in our book, two forms, NWA and JHC are always given together with tables, symmetry relations and recurrence formulas. It is shown that the complementary argument theorems can be extended to the new polynomials...