Rota-Baxter operators and Bernoulli polynomials
Communications in Mathematics (2021)
- Issue: 1, page 1-14
 - ISSN: 1804-1388
 
Access Full Article
topAbstract
topHow to cite
topGubarev, Vsevolod. "Rota-Baxter operators and Bernoulli polynomials." Communications in Mathematics (2021): 1-14. <http://eudml.org/doc/298004>.
@article{Gubarev2021,
	abstract = {We develop the connection between Rota-Baxter operators arisen from algebra and mathematical physics and Bernoulli polynomials. We state that a trivial property of Rota-Baxter operators implies the symmetry of the power sum polynomials and Bernoulli polynomials. We show how Rota-Baxter operators equalities rewritten in terms of Bernoulli polynomials generate identities for the latter.},
	author = {Gubarev, Vsevolod},
	journal = {Communications in Mathematics},
	keywords = {Rota-Baxter operator; Bernoulli number; Bernoulli polynomial},
	language = {eng},
	number = {1},
	pages = {1-14},
	publisher = {University of Ostrava},
	title = {Rota-Baxter operators and Bernoulli polynomials},
	url = {http://eudml.org/doc/298004},
	year = {2021},
}
TY  - JOUR
AU  - Gubarev, Vsevolod
TI  - Rota-Baxter operators and Bernoulli polynomials
JO  - Communications in Mathematics
PY  - 2021
PB  - University of Ostrava
IS  - 1
SP  - 1
EP  - 14
AB  - We develop the connection between Rota-Baxter operators arisen from algebra and mathematical physics and Bernoulli polynomials. We state that a trivial property of Rota-Baxter operators implies the symmetry of the power sum polynomials and Bernoulli polynomials. We show how Rota-Baxter operators equalities rewritten in terms of Bernoulli polynomials generate identities for the latter.
LA  - eng
KW  - Rota-Baxter operator; Bernoulli number; Bernoulli polynomial
UR  - http://eudml.org/doc/298004
ER  - 
References
top- Agoh, T., On Bernoulli numbers, I, C. R. Math. Rep. Acad. Sci. Canada, 10, 1988, 7-12, (1988) MR0925293
 - Agoh, T., Convolution identities for Bernoulli and Genocchi polynomials, Electron. J. Comb., 21, 1, 2014, 1-14, (2014) MR3192396
 - Agoh, T., Dilcher, K., 10.1016/j.jmaa.2011.03.061, J. Math. Anal. Appl., 381, 1, 2011, 10-16, Elsevier, (2011) MR2796188DOI10.1016/j.jmaa.2011.03.061
 - Aguiar, M., 10.1023/A:1010818119040, Lett. Math. Phys., 54, 4, 2000, 263-277, Springer, (2000) MR1846958DOI10.1023/A:1010818119040
 - Atkinson, F.V., 10.1016/0022-247X(63)90075-1, J. Math. Anal. Appl., 7, 1, 1963, 1-30, Elsevier, (1963) MR0155196DOI10.1016/0022-247X(63)90075-1
 - Baxter, G., 10.2140/pjm.1960.10.731, Pacific J. Math, 10, 3, 1960, 731-742, (1960) MR0119224DOI10.2140/pjm.1960.10.731
 - Belavin, A.A., Drinfel'd, V.G., 10.1007/BF01081585, Funct. Anal. Appl., 16, 3, 1982, 159-180, (1982) MR0674005DOI10.1007/BF01081585
 - Carlitz, L., 10.1112/jlms/s1-34.3.361, J. London Math. Soc., s1-34, 3, 1959, 361-363, Narnia, (1959) MR0107022DOI10.1112/jlms/s1-34.3.361
 - Cartier, P., 10.1016/0001-8708(72)90018-7, Adv. Math., 9, 2, 1972, 253-265, Academic Press, (1972) MR0338040DOI10.1016/0001-8708(72)90018-7
 - Connes, A., Kreimer, D., 10.1007/s002200050779, Commun. Math. Phys., 210, 1, 2000, 249-273, Springer, (2000) MR1748177DOI10.1007/s002200050779
 - Ebrahimi-Fard, K., 10.1023/A:1020712215075, Lett. Math. Phys., 61, 2, 2002, 139-147, Springer, (2002) MR1936573DOI10.1023/A:1020712215075
 - Ebrahimi-Fard, K., Rota-Baxter algebras and the Hopf algebra of renormalization, 2006, Ph.D. Thesis, University of Bonn. (2006)
 - Ebrahimi-Fard, K., Guo, L., Multiple zeta values and Rota-Baxter algebras, Integers, 8, 2--A4, 2008, 1-18, (2008) MR2438289
 - Gessel, I.M., 10.1016/j.jnt.2003.08.010, J. Number Theory, 110, 1, 2005, 75-82, Elsevier, (2005) MR2114674DOI10.1016/j.jnt.2003.08.010
 - Graham, R.L., Knuth, D.E., Patashnik, O., Concrete Mathematics: a foundation for computer science, 1994, Addison-Wesley Professional, Reading (MA, USA), Second ed. (1994) MR1397498
 - Gubarev, V., Rota-Baxter operators on unital algebras, Mosc. Math. J., (Accepted) Preprint arXiv:1805.00723v3.
 - Gubarev, V., Kolesnikov, P., Embedding of dendriform algebras into Rota-Baxter algebras, Cent. Eur. J. Math. -- Open Mathematics, 11, 2, 2013, 226-245, Versita, (2013) MR3000640
 - Guo, L., An introduction to Rota-Baxter algebra, 2012, International Press Somerville, Higher Education Press, Beijing, Surveys of Modern Mathematics, vol. 4.. (2012) MR3025028
 - Guo, L., Keigher, W., 10.1006/aima.1999.1858, Adv. Math., 150, 1, 2000, 117-149, (2000) MR1744484DOI10.1006/aima.1999.1858
 - Kim, D.S., Kim, T., Bernoulli basis and the product of several Bernoulli polynomials, Int. J. Math. Math. Sci., 2012, 2012, 12 pp, Hindawi, (2012) MR2969368
 - Kim, D.S., Kim, T., Lee, S.-H., Kim, Y.-H., Some identities for the product of two Bernoulli and Euler polynomials, Adv. Differ. Equ., 2012, 95, 2012, 14 pp, Springer, (2012) MR2948735
 - Lehmer, D.H., 10.1080/00029890.1988.11972114, Am. Math. Mon., 95, 10, 1988, 905-911, Taylor & Francis, (1988) MR0979133DOI10.1080/00029890.1988.11972114
 - Matiyasevich, Yu., Identities with Bernoulli numbers, 1997, http://logic.pdmi.ras.ru/~yumat/Journal/Bernoulli/bernulli.htm. (1997)
 - Miki, H., 10.1016/0022-314X(78)90026-4, J. Number Theory, 10, 3, 1978, 297-302, Elsevier, (1978) MR0506640DOI10.1016/0022-314X(78)90026-4
 - Miller, J.B., Some properties of Baxter operators, Acta Math. Hung., 17, 3-4, 1966, 387-400, Akadémiai Kiadó, co-published with Springer Science+ Business Media BV (1966) MR0205074
 - Newsome, N.J., Nogin, M.S., Sabuwala, A.H., A proof of symmetry of the power sum polynomials using a novel Bernoulli number identity, J. Integer Seq., 20, 2, 2017, 10 pp, (2017) MR3680201
 - Nielsen, N., Traité élémentaire des nombres de Bernoulli, 1923, Gauthier-Villars, (1923)
 - Ogievetsky, O., Popov, T., 10.4310/ATMP.2010.v14.n2.a3, Adv. Theor. Math. Phys., 14, 2, 2010, 439-505, (2010) MR2721653DOI10.4310/ATMP.2010.v14.n2.a3
 - Ogievetskii, O.V., Schechtman, V.V., 10.17323/1609-4514-2010-10-4-765-788, Mosc. Math. J., 10, 4, 2010, 765-788, (2010) MR2791057DOI10.17323/1609-4514-2010-10-4-765-788
 - Rota, G.-C., 10.1090/S0002-9904-1969-12156-7, Bull. Am. Math. Soc., 75, 2, 1969, 325-329, (1969) MR0244070DOI10.1090/S0002-9904-1969-12156-7
 - Semenov-Tyan-Shanskii, M.A., 10.1007/BF01076717, Funct. Anal. its Appl., 17, 1983, 259-272, (1983) MR0725413DOI10.1007/BF01076717
 - Sury, B., Wang, T., Zhao, F.-Z., Identities involving reciprocals of binomial coefficients, J. Integer Seq., 7, 2, 2004, 12 pp, (2004) MR2084860
 - Tuenter, H.J.H., 10.1080/00029890.2001.11919750, Am. Math. Mon., 108, 3, 2001, 258-261, Taylor & Francis, (2001) MR1834708DOI10.1080/00029890.2001.11919750
 - Zagier, D., Curious and exotic identities for Bernoulli numbers (Appendix), Bernoulli numbers and zeta functions, 2014, 239-262, Springer, (2014) MR3307736
 - Zhao, J., Multiple zeta functions, multiple polylogarithms and their special values, 2016, World Scientific, Series on Number Theory and Its Applications, vol. 12.. (2016) MR3469645
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.