Rota-Baxter operators and Bernoulli polynomials

Vsevolod Gubarev

Communications in Mathematics (2021)

  • Issue: 1, page 1-14
  • ISSN: 1804-1388

Abstract

top
We develop the connection between Rota-Baxter operators arisen from algebra and mathematical physics and Bernoulli polynomials. We state that a trivial property of Rota-Baxter operators implies the symmetry of the power sum polynomials and Bernoulli polynomials. We show how Rota-Baxter operators equalities rewritten in terms of Bernoulli polynomials generate identities for the latter.

How to cite

top

Gubarev, Vsevolod. "Rota-Baxter operators and Bernoulli polynomials." Communications in Mathematics (2021): 1-14. <http://eudml.org/doc/298004>.

@article{Gubarev2021,
abstract = {We develop the connection between Rota-Baxter operators arisen from algebra and mathematical physics and Bernoulli polynomials. We state that a trivial property of Rota-Baxter operators implies the symmetry of the power sum polynomials and Bernoulli polynomials. We show how Rota-Baxter operators equalities rewritten in terms of Bernoulli polynomials generate identities for the latter.},
author = {Gubarev, Vsevolod},
journal = {Communications in Mathematics},
keywords = {Rota-Baxter operator; Bernoulli number; Bernoulli polynomial},
language = {eng},
number = {1},
pages = {1-14},
publisher = {University of Ostrava},
title = {Rota-Baxter operators and Bernoulli polynomials},
url = {http://eudml.org/doc/298004},
year = {2021},
}

TY - JOUR
AU - Gubarev, Vsevolod
TI - Rota-Baxter operators and Bernoulli polynomials
JO - Communications in Mathematics
PY - 2021
PB - University of Ostrava
IS - 1
SP - 1
EP - 14
AB - We develop the connection between Rota-Baxter operators arisen from algebra and mathematical physics and Bernoulli polynomials. We state that a trivial property of Rota-Baxter operators implies the symmetry of the power sum polynomials and Bernoulli polynomials. We show how Rota-Baxter operators equalities rewritten in terms of Bernoulli polynomials generate identities for the latter.
LA - eng
KW - Rota-Baxter operator; Bernoulli number; Bernoulli polynomial
UR - http://eudml.org/doc/298004
ER -

References

top
  1. Agoh, T., On Bernoulli numbers, I, C. R. Math. Rep. Acad. Sci. Canada, 10, 1988, 7-12, (1988) MR0925293
  2. Agoh, T., Convolution identities for Bernoulli and Genocchi polynomials, Electron. J. Comb., 21, 1, 2014, 1-14, (2014) MR3192396
  3. Agoh, T., Dilcher, K., 10.1016/j.jmaa.2011.03.061, J. Math. Anal. Appl., 381, 1, 2011, 10-16, Elsevier, (2011) MR2796188DOI10.1016/j.jmaa.2011.03.061
  4. Aguiar, M., 10.1023/A:1010818119040, Lett. Math. Phys., 54, 4, 2000, 263-277, Springer, (2000) MR1846958DOI10.1023/A:1010818119040
  5. Atkinson, F.V., 10.1016/0022-247X(63)90075-1, J. Math. Anal. Appl., 7, 1, 1963, 1-30, Elsevier, (1963) MR0155196DOI10.1016/0022-247X(63)90075-1
  6. Baxter, G., 10.2140/pjm.1960.10.731, Pacific J. Math, 10, 3, 1960, 731-742, (1960) MR0119224DOI10.2140/pjm.1960.10.731
  7. Belavin, A.A., Drinfel'd, V.G., 10.1007/BF01081585, Funct. Anal. Appl., 16, 3, 1982, 159-180, (1982) MR0674005DOI10.1007/BF01081585
  8. Carlitz, L., 10.1112/jlms/s1-34.3.361, J. London Math. Soc., s1-34, 3, 1959, 361-363, Narnia, (1959) MR0107022DOI10.1112/jlms/s1-34.3.361
  9. Cartier, P., 10.1016/0001-8708(72)90018-7, Adv. Math., 9, 2, 1972, 253-265, Academic Press, (1972) MR0338040DOI10.1016/0001-8708(72)90018-7
  10. Connes, A., Kreimer, D., 10.1007/s002200050779, Commun. Math. Phys., 210, 1, 2000, 249-273, Springer, (2000) MR1748177DOI10.1007/s002200050779
  11. Ebrahimi-Fard, K., 10.1023/A:1020712215075, Lett. Math. Phys., 61, 2, 2002, 139-147, Springer, (2002) MR1936573DOI10.1023/A:1020712215075
  12. Ebrahimi-Fard, K., Rota-Baxter algebras and the Hopf algebra of renormalization, 2006, Ph.D. Thesis, University of Bonn. (2006) 
  13. Ebrahimi-Fard, K., Guo, L., Multiple zeta values and Rota-Baxter algebras, Integers, 8, 2--A4, 2008, 1-18, (2008) MR2438289
  14. Gessel, I.M., 10.1016/j.jnt.2003.08.010, J. Number Theory, 110, 1, 2005, 75-82, Elsevier, (2005) MR2114674DOI10.1016/j.jnt.2003.08.010
  15. Graham, R.L., Knuth, D.E., Patashnik, O., Concrete Mathematics: a foundation for computer science, 1994, Addison-Wesley Professional, Reading (MA, USA), Second ed. (1994) MR1397498
  16. Gubarev, V., Rota-Baxter operators on unital algebras, Mosc. Math. J., (Accepted) Preprint arXiv:1805.00723v3. 
  17. Gubarev, V., Kolesnikov, P., Embedding of dendriform algebras into Rota-Baxter algebras, Cent. Eur. J. Math. -- Open Mathematics, 11, 2, 2013, 226-245, Versita, (2013) MR3000640
  18. Guo, L., An introduction to Rota-Baxter algebra, 2012, International Press Somerville, Higher Education Press, Beijing, Surveys of Modern Mathematics, vol. 4.. (2012) MR3025028
  19. Guo, L., Keigher, W., 10.1006/aima.1999.1858, Adv. Math., 150, 1, 2000, 117-149, (2000) MR1744484DOI10.1006/aima.1999.1858
  20. Kim, D.S., Kim, T., Bernoulli basis and the product of several Bernoulli polynomials, Int. J. Math. Math. Sci., 2012, 2012, 12 pp, Hindawi, (2012) MR2969368
  21. Kim, D.S., Kim, T., Lee, S.-H., Kim, Y.-H., Some identities for the product of two Bernoulli and Euler polynomials, Adv. Differ. Equ., 2012, 95, 2012, 14 pp, Springer, (2012) MR2948735
  22. Lehmer, D.H., 10.1080/00029890.1988.11972114, Am. Math. Mon., 95, 10, 1988, 905-911, Taylor & Francis, (1988) MR0979133DOI10.1080/00029890.1988.11972114
  23. Matiyasevich, Yu., Identities with Bernoulli numbers, 1997, http://logic.pdmi.ras.ru/~yumat/Journal/Bernoulli/bernulli.htm. (1997) 
  24. Miki, H., 10.1016/0022-314X(78)90026-4, J. Number Theory, 10, 3, 1978, 297-302, Elsevier, (1978) MR0506640DOI10.1016/0022-314X(78)90026-4
  25. Miller, J.B., Some properties of Baxter operators, Acta Math. Hung., 17, 3-4, 1966, 387-400, Akadémiai Kiadó, co-published with Springer Science+ Business Media BV (1966) MR0205074
  26. Newsome, N.J., Nogin, M.S., Sabuwala, A.H., A proof of symmetry of the power sum polynomials using a novel Bernoulli number identity, J. Integer Seq., 20, 2, 2017, 10 pp, (2017) MR3680201
  27. Nielsen, N., Traité élémentaire des nombres de Bernoulli, 1923, Gauthier-Villars, (1923) 
  28. Ogievetsky, O., Popov, T., 10.4310/ATMP.2010.v14.n2.a3, Adv. Theor. Math. Phys., 14, 2, 2010, 439-505, (2010) MR2721653DOI10.4310/ATMP.2010.v14.n2.a3
  29. Ogievetskii, O.V., Schechtman, V.V., 10.17323/1609-4514-2010-10-4-765-788, Mosc. Math. J., 10, 4, 2010, 765-788, (2010) MR2791057DOI10.17323/1609-4514-2010-10-4-765-788
  30. Rota, G.-C., 10.1090/S0002-9904-1969-12156-7, Bull. Am. Math. Soc., 75, 2, 1969, 325-329, (1969) MR0244070DOI10.1090/S0002-9904-1969-12156-7
  31. Semenov-Tyan-Shanskii, M.A., 10.1007/BF01076717, Funct. Anal. its Appl., 17, 1983, 259-272, (1983) MR0725413DOI10.1007/BF01076717
  32. Sury, B., Wang, T., Zhao, F.-Z., Identities involving reciprocals of binomial coefficients, J. Integer Seq., 7, 2, 2004, 12 pp, (2004) MR2084860
  33. Tuenter, H.J.H., 10.1080/00029890.2001.11919750, Am. Math. Mon., 108, 3, 2001, 258-261, Taylor & Francis, (2001) MR1834708DOI10.1080/00029890.2001.11919750
  34. Zagier, D., Curious and exotic identities for Bernoulli numbers (Appendix), Bernoulli numbers and zeta functions, 2014, 239-262, Springer, (2014) MR3307736
  35. Zhao, J., Multiple zeta functions, multiple polylogarithms and their special values, 2016, World Scientific, Series on Number Theory and Its Applications, vol. 12.. (2016) MR3469645

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.