The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Structure of Blaschke cocycles”

Functions Equivalent to Borel Measurable Ones

Andrzej Komisarski, Henryk Michalewski, Paweł Milewski (2010)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let X and Y be two Polish spaces. Functions f,g: X → Y are called equivalent if there exists a bijection φ from X onto itself such that g∘φ = f. Using a theorem of J. Saint Raymond we characterize functions equivalent to Borel measurable ones. This characterization answers a question asked by M. Morayne and C. Ryll-Nardzewski.

Recent developments in the theory of Borel reducibility

Greg Hjorth, Alexander S. Kechris (2001)

Fundamenta Mathematicae

Similarity:

Let E₀ be the Vitali equivalence relation and E₃ the product of countably many copies of E₀. Two new dichotomy theorems for Borel equivalence relations are proved. First, for any Borel equivalence relation E that is (Borel) reducible to E₃, either E is reducible to E₀ or else E₃ is reducible to E. Second, if E is a Borel equivalence relation induced by a Borel action of a closed subgroup of the infinite symmetric group that admits an invariant metric, then either E is reducible...

Extensions of Borel Measurable Maps and Ranges of Borel Bimeasurable Maps

Petr Holický (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We prove an abstract version of the Kuratowski extension theorem for Borel measurable maps of a given class. It enables us to deduce and improve its nonseparable version due to Hansell. We also study the ranges of not necessarily injective Borel bimeasurable maps f and show that some control on the relative classes of preimages and images of Borel sets under f enables one to get a bound on the absolute class of the range of f. This seems to be of some interest even within separable spaces. ...

Borel-Wadge degrees

Alessandro Andretta, Donald A. Martin (2003)

Fundamenta Mathematicae

Similarity:

Two sets of reals are Borel equivalent if one is the Borel pre-image of the other, and a Borel-Wadge degree is a collection of pairwise Borel equivalent subsets of ℝ. In this note we investigate the structure of Borel-Wadge degrees under the assumption of the Axiom of Determinacy.

Normal numbers and the Borel hierarchy

Verónica Becher, Pablo Ariel Heiber, Theodore A. Slaman (2014)

Fundamenta Mathematicae

Similarity:

We show that the set of absolutely normal numbers is Π⁰₃-complete in the Borel hierarchy of subsets of real numbers. Similarly, the set of absolutely normal numbers is Π⁰₃-complete in the effective Borel hierarchy.

Coordinatewise decomposition of group-valued Borel functions

Benjamin D. Miller (2007)

Fundamenta Mathematicae

Similarity:

Answering a question of Kłopotowski, Nadkarni, Sarbadhikari, and Srivastava, we characterize the Borel sets S ⊆ X × Y with the property that every Borel function f: S → ℂ is of the form f(x,y) = u(x) + v(y), where u: X → ℂ and v: Y → ℂ are Borel.