Displaying similar documents to “Local convergence of convolution integral”

On the approximation by convolution operators in homogeneous Banach spaces on R^d

Draganov, Borislav (2014)

Mathematica Balkanica New Series

Similarity:

AMS Subject Classification 2010: 41A25, 41A35, 41A40, 41A63, 41A65, 42A38, 42A85, 42B10, 42B20 The paper presents a description of the optimal rate of approximation as well as of a broad class of functions that possess it for convolution operators acting in the so-called homogeneous Banach spaces of functions on Rd. The description is the same in any such space and uses the Fourier transform. Simple criteria for establishing upper estimates of the approximation error via...

A characterization of Fourier transforms

Philippe Jaming (2010)

Colloquium Mathematicae

Similarity:

The aim of this paper is to show that, in various situations, the only continuous linear (or not) map that transforms a convolution product into a pointwise product is a Fourier transform. We focus on the cyclic groups ℤ/nℤ, the integers ℤ, the torus 𝕋 and the real line. We also ask a related question for the twisted convolution.

On the support of Fourier transform of weighted distributions

Martha Guzmán-Partida (2010)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We give sufficient conditions for the support of the Fourier transform of a certain class of weighted integrable distributions to lie in the region x 1 0 and x 2 0 .

Local-global convergence, an analytic and structural approach

Jaroslav Nešetřil, Patrice Ossona de Mendez (2019)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Based on methods of structural convergence we provide a unifying view of local-global convergence, fitting to model theory and analysis. The general approach outlined here provides a possibility to extend the theory of local-global convergence to graphs with unbounded degrees. As an application, we extend previous results on continuous clustering of local convergent sequences and prove the existence of modeling quasi-limits for local-global convergent sequences of nowhere dense graphs. ...