On discontinuity of the spectral radius in Banach algebras
Vladimír Müller (1977)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
Vladimír Müller (1977)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
Jaroslav Zemánek (1982)
Banach Center Publications
Similarity:
M. M. Talabani (1982)
Colloquium Mathematicae
Similarity:
Robert Grone, Peter D. Johnson, Jr. (1982)
Colloquium Mathematicae
Similarity:
Peter D. Johnson, Jr. (1978)
Colloquium Mathematicae
Similarity:
E. Vesentini (1972)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
V. Pták, J. Zemánek (1977)
Manuscripta mathematica
Similarity:
Rudi Brits (2011)
Studia Mathematica
Similarity:
We extend an example of B. Aupetit, which illustrates spectral discontinuity for operators on an infinite-dimensional separable Hilbert space, to a general spectral discontinuity result in abstract Banach algebras. This can then be used to show that given any Banach algebra, Y, one may adjoin to Y a non-commutative inessential ideal, I, so that in the resulting algebra, A, the following holds: To each x ∈ Y whose spectrum separates the plane there corresponds a perturbation of x, of...
Gerd Herzog, Peer C. Kunstmann (2023)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
In ordered Banach algebras, we introduce eventually and asymptotically positive elements. We give conditions for the following spectral properties: the spectral radius belongs to the spectrum (Perron--Frobenius property); the spectral radius is the only element in the peripheral spectrum; there are positive (approximate) eigenvectors for the spectral radius. Recently such types of results have been shown for operators on Banach lattices. Our results can be viewed as a complement, since...