On Banach algebras satisfying a spectral maximum principle

E. Vesentini

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1972)

  • Volume: 26, Issue: 4, page 933-943
  • ISSN: 0391-173X

How to cite

top

Vesentini, E.. "On Banach algebras satisfying a spectral maximum principle." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 26.4 (1972): 933-943. <http://eudml.org/doc/83625>.

@article{Vesentini1972,
author = {Vesentini, E.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {4},
pages = {933-943},
publisher = {Scuola normale superiore},
title = {On Banach algebras satisfying a spectral maximum principle},
url = {http://eudml.org/doc/83625},
volume = {26},
year = {1972},
}

TY - JOUR
AU - Vesentini, E.
TI - On Banach algebras satisfying a spectral maximum principle
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1972
PB - Scuola normale superiore
VL - 26
IS - 4
SP - 933
EP - 943
LA - eng
UR - http://eudml.org/doc/83625
ER -

References

top
  1. [1] T.W. Gamelin, Uniform algebras, Prentice Hall, Englewood Cliffs, N. I., 1966. Zbl0213.40401MR410387
  2. [2] E. Hewitt and K. Ross, Abstract Harmonic Analysis, II, Springer-Verlag, Berlin-Heidelberg-New York, 1970. Zbl0213.40103MR262773
  3. [3] G.M. Leibowitz, Lectures on Complex Function Algebras, Scott Foresman, 1970. Zbl0219.46037MR428042
  4. [4] A. Pelczynski, Some linear topological properties of separable function algebras, Proc. Amer. Math. Soc., 18 (1967), 652-660. Zbl0168.11201MR213883
  5. [5] A. Pelczynski and Z. Semadeni, Spaces of continuous functions (1II) (Spaces C (Ω) for Ω without perfect subsets), Studia Mathematica, 18 (1959), 211-222. Zbl0091.27803
  6. [6] W. Rudin, Boundary values of continuous analytic functions, Proc. Amer. Math. Soc., 7 (1956), 808-811. Zbl0073.29701MR81948
  7. [6'] W. Rudin, Continuous functions on compact spaces without perfect subsets, Proc. Amer. Math. Soc.8 (1957), 39-42. Zbl0077.31103MR85475
  8. [7] E. Vesentini, Maximum theorems for spectra, Essays on Topology and Related Topics, Mémoires dédiés à Georges De Rham, Springer-Verlag, Berlin-Heidelberg -New York, 1970; 111-117. Zbl0195.41903MR271731
  9. [8] E. Vesentini, Maximum theorems for vector-valued holomorphic functions, Technical Report TR 69-132, Department of Mathematics, University of Maryland; also in Rend. Sem. Mat. e Fisico di Milano, XL (1970), 24-55. Zbl0221.58007MR287299

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.