The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A characterization of H p ( R n ) in terms of atoms”

Nonconvolution transforms with oscillating kernels that map 1 0 , 1 into itself

G. Sampson (1993)

Studia Mathematica

Similarity:

We consider operators of the form ( Ω f ) ( y ) = ʃ - Ω ( y , u ) f ( u ) d u with Ω(y,u) = K(y,u)h(y-u), where K is a Calderón-Zygmund kernel and h L (see (0.1) and (0.2)). We give necessary and sufficient conditions for such operators to map the Besov space 1 0 , 1 (= B) into itself. In particular, all operators with h ( y ) = e i | y | a , a > 0, a ≠ 1, map B into itself.

The local versions of H p ( n ) spaces at the origin

Shan Lu, Da Yang (1995)

Studia Mathematica

Similarity:

Let 0 < p ≤ 1 < q < ∞ and α = n(1/p - 1/q). We introduce some new Hardy spaces H K ̇ q α , p ( n ) which are the local versions of H p ( n ) spaces at the origin. Characterizations of these spaces in terms of atomic and molecular decompositions are established, together with their φ-transform characterizations in M. Frazier and B. Jawerth’s sense. We also prove an interpolation theorem for operators on H K ̇ q α , p ( n ) and discuss the H K ̇ q α , p ( n ) -boundedness of Calderón-Zygmund operators. Similar results can also be obtained...

Several characterizations for the special atom spaces with applications.

Geraldo Soares de Souza, Richard O&amp;#039;Neil, Gary Sampson (1986)

Revista Matemática Iberoamericana

Similarity:

The theory of functions plays an important role in harmonic analysis. Because of this, it turns out that some spaces of analytic functions have been studied extensively, such as H-spaces, Bergman spaces, etc. One of the major insights that has developed in the study of H-spaces is what we call the real atomic characterization of these spaces.

On the characterization of Hardy-Besov spaces on the dyadic group and its applications

Jun Tateoka (1994)

Studia Mathematica

Similarity:

C. Watari [12] obtained a simple characterization of Lipschitz classes L i p ( p ) α ( W ) ( 1 p , α > 0 ) on the dyadic group using the L p -modulus of continuity and the best approximation by Walsh polynomials. Onneweer and Weiyi [4] characterized homogeneous Besov spaces B p , q α on locally compact Vilenkin groups, but there are still some gaps to be filled up. Our purpose is to give the characterization of Besov spaces B p , q α by oscillations, atoms and others on the dyadic groups. As applications, we show a strong capacity inequality...

( H p , L p ) -type inequalities for the two-dimensional dyadic derivative

Ferenc Weisz (1996)

Studia Mathematica

Similarity:

It is shown that the restricted maximal operator of the two-dimensional dyadic derivative of the dyadic integral is bounded from the two-dimensional dyadic Hardy-Lorentz space H p , q to L p , q (2/3 < p < ∞, 0 < q ≤ ∞) and is of weak type ( L 1 , L 1 ) . As a consequence we show that the dyadic integral of a ∞ function f L 1 is dyadically differentiable and its derivative is f a.e.

The value-distribution of lacunary series and a conjecture of Paley

Takafumi Murai (1981)

Annales de l'institut Fourier

Similarity:

The purpose of this paper is to establish a theorem which answers a conjecture of Paley on the distribution of values of Hadamard lacunary series and which is useful to study the Peano curve property of such series.