Displaying similar documents to “A refinement of the Helson-Szegö theorem and the determination of the extremal measures”

The distribution of extremal points for Kergin interpolations : real case

Thomas Bloom, Jean-Paul Calvi (1998)

Annales de l'institut Fourier

Similarity:

We show that a convex totally real compact set in n admits an extremal array for Kergin interpolation if and only if it is a totally real ellipse. (An array is said to be extremal for K when the corresponding sequence of Kergin interpolation polynomials converges uniformly (on K ) to the interpolated function as soon as it is holomorphic on a neighborhood of K .). Extremal arrays on these ellipses are characterized in terms of the distribution of the points and the rate of convergence...