Displaying similar documents to “Norm inequalities relating singular integrals and the maximal function”

Norm inequalities for potential-type operators.

Sagun Chanillo, Jan-Olov Strömberg, Richard L. Wheeden (1987)

Revista Matemática Iberoamericana

Similarity:

The purpose of this paper is to derive norm inequalities for potentials of the form Tf(x) = ∫(Rn) f(y)K(x,y)dy,     x ∈ Rn, when K is a Kernel which satisfies estimates like those that hold for the Green function associated with the degenerate elliptic equations studied in [3] and [4].

On the two-weight problem for singular integral operators

David Cruz-Uribe, Carlos Pérez (2002)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

We give A p type conditions which are sufficient for two-weight, strong ( p , p ) inequalities for Calderón-Zygmund operators, commutators, and the Littlewood-Paley square function g λ * . Our results extend earlier work on weak ( p , p ) inequalities in [13].

The work of José Luis Rubio de Francia (III).

Javier Duoandikoetxea (1991)

Publicacions Matemàtiques

Similarity:

The aim of this paper is to review a set of articles ([6], [10], [11], [13], [16], [25]) of which José Luis Rubio de Francia was author and co-author written between 1985 and 1987.

On the resolvents of dyadic paraproducts.

María Cristina Pereyra (1994)

Revista Matemática Iberoamericana

Similarity:

We consider the boundedness of certain singular integral operators that arose in the study of Sobolev spaces on Lipschitz curves, [P1]. The standard theory available (David and Journé's T1 Theorem, for instance; see [D]) does not apply to this case becuase the operators are not necessarily Calderón-Zygmund operators, [Ch]. One of these operators gives an explicit formula for the resolvent at λ = 1 of the dyadic paraproduct, [Ch].