The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Topological conjugacy of Morse flows over finite Abelian groups”

The centralizer of Morse shifts

Mariusz Lemanczyk (1985)

Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications

Similarity:

On foundations of the Conley index theory

Roman Srzednicki (1999)

Banach Center Publications

Similarity:

The Conley index theory was introduced by Charles C. Conley (1933-1984) in [C1] and a major part of the foundations of the theory was developed in Ph. D. theses of his students, see for example [Ch, Ku, Mon]. The Conley index associates the homotopy type of some pointed space to an isolated invariant set of a flow, just as the fixed point index associates an integer number to an isolated set of fixed points of a continuous map. Examples of isolated invariant sets arise naturally in the...

The topological centralizers of Toeplitz flows and their Z-extensions.

Wojciech Bulatek, Jan Kwiatkowski (1990)

Publicacions Matemàtiques

Similarity:

The topological centralizers of Toeplitz flows satisfying a condition (Sh) and their Z-extensions are described. Such Toeplitz flows are topologically coalescent. If {q, q, ...} is a set of all except at least one prime numbers and I, I, ... are positive integers then the direct sum ⊕ Z ⊕ Z can be the topological centralizer of a Toeplitz flow.

Almost 1-1 extensions of Furstenberg-Weiss type and applications to Toeplitz flows

T. Downarowicz, Y. Lacroix (1998)

Studia Mathematica

Similarity:

Let ( Z , T Z ) be a minimal non-periodic flow which is either symbolic or strictly ergodic. Any topological extension of ( Z , T Z ) is Borel isomorphic to an almost 1-1 extension of ( Z , T Z ) . Moreover, this isomorphism preserves the affine-topological structure of the invariant measures. The above extends a theorem of Furstenberg-Weiss (1989). As an application we prove that any measure-preserving transformation which admits infinitely many rational eigenvalues is measure-theoretically isomorphic to a strictly...

Reconstructing the global dynamics of attractors via the Conley index

Christopher McCord (1999)

Banach Center Publications

Similarity:

Given an unknown attractor 𝓐 in a continuous dynamical system, how can we discover the topology and dynamics of 𝓐? As a practical matter, how can we do so from only a finite amount of information? One way of doing so is to produce a semi-conjugacy from 𝓐 onto a model system 𝓜 whose topology and dynamics are known. The complexity of 𝓜 then provides a lower bound for the complexity of 𝓐. The Conley index can be used to construct a simplicial model and a surjective semi-conjugacy...